Customer—Centered Reliability Measures For Flexible
Multistate Reliability Models

by

Russell Brunelle

A dissertation submitted in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

University of Washington

1998

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to Offer Degree

Date

In presenting this dissertation in partial fulfillment of the requirements for the Doc-
toral degree at the University of Washington, I agree that the Library shall make
its copies freely available for inspection. I further agree that extensive copying of
this dissertation is allowable only for scholarly purposes, consistent with “fair use”
as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of
this dissertation may be referred to University Microfilms, 1490 Eisenhower Place,
P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted “the right
to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Customer—Centered Reliability Measures For Flexible Multistate
Reliability Models

by Russell Brunelle

Chairperson of Supervisory Committee
Dr. Kailash C. Kapur

Industrial Engineering Program

Most models and tools for analyzing reliability have traditionally been based on bi-
nary approximations; these models and tools are expanded in this dissertation to
allow multistate and continuum analysis. A series of customer-centered reliability
measures, valid for binary, multistate, and continuum reliability models, is defined
and developed. Techniques are presented for computing or approximating the state
of the system as a function of the states of its components, based on subsystem iden-
tification and an application of multiquadric interpolation, and an extension of the
interpolation method is presented which will preserve any monotonicity in the origi-
nal customer-supplied data set. Methods for multistate reliability modeling based on
continuous-time Markov chains are developed and extended. Procedures for assess-
ing the accuracy of a continuum model discretization are proposed, and reliability
measure computations for non-trivial continuum and mixed systems are illustrated.
A comprehensive software package which performs non-binary reliability analyses is

included and documented.

TABLE OF CONTENTS

List of Figures

List of Tables

Chapter 1: Introduction

1.1 Motivation
1.2 What Other Researchers Have Done.
1.3 This Dissertation’s Original Contributions
1.4 Basic Notation
1.5 Model Types,

1.5.1 Binary,

1.5.2 Multistateo

1.5.3 Continuum
1.6 Model Coherence
1.7 Reliability and Quality

Chapter 2: Reliability Measures
2.1 Imtroduction

2.2 Reliability Measure Computation and Definitions

2.2.1 Moment-in-Time
2.2.2 Finite-Time
2.2.3 Infinite-Time

2.3 Multistate Example

viii

xii

o N J ot W N

Chapter 3: Selection-Based Structure Function Construction

3.1
3.2
3.3

Introduction Lo
Adding Additional Parameters
Boundary Point Analysis
3.3.1 Introductiono Lo
3.3.2 Notation

3.3.3 Structure Function Representation by Boundary Points

Chapter 4: Interpolation-Based Structure Function Construction

4.1
4.2

4.3

4.4

Introduction oo
Scattered Data Interpolation
4.2.1 General Terminology
4.2.2 Hardy’s Multiquadric Method
423 Effectof o
4.2.4 Shepard’s Method
4.2.5 Discussion o
Examples
4.3.1 Example 1
432 Example2
4.3.3 Example3
Insuring Monotonicity
4.4.1 Introduction Lo oL
4.4.2 Procedure and Application
4.4.3 Coherence-Preserving Interpolation Steps
444 Discussion

11

30
30
33
36
36
36
38

Chapter 5: Structure Function Partial-Information Bounds
5.1 Imtroduction o
5.2 Continuum Structure Function Bounds
521 Example 1
522 Example2
5.3 Example 2 Figures oo

5.4 Discrete Structure Function Bounds

Chapter 6: Markov Modeling for Multistate Models
6.1 Introductiono
6.2 Transitions to Adjacent States Only
6.2.1 Identical Transition Rates
6.2.2 Distinct Transition Rates.
6.3 Transitions to Any Lower State
6.3.1 Examples

Chapter 7: Additional Topics
7.1 Traditional Bounds for Non-Binary Models
7.1.1 Introduction Lo
7.1.2 Trivial Bounds for Direct Selection
7.1.3 Discrete Path-Cut Bounds with Partial Information
7.2 Discretization Lo
7.2.1 Customer-Interaction Approach
7.2.2 Optimization Approach
7.3 Component and System Data Collection

Chapter 8: Case Studies and Examples

8.1 Misleading Discretizations

111

58
28
60
60
62
65
74

78
78
79
30
81
84
85

86
86
86
87
38
90
90
92
93

94

8.1.1 Bicycle Example 94

8.1.2 Automobile Example L. 99

8.2 Time-Dynamic Models 102
8.2.1 Tire Example o o 102

8.2.2 Military Example o000 103

8.2.3 Continuum Example 110

8.3 Large Static System oL 114
8.4 Aviation Communications 117
8.5 Quadratic Loss Function Examples 120
8.5.1 Introduction Lo 120

8.5.2 Methodology, 121

853 Examplel 123

8.5.4 Example2 124
Chapter 9: Future Work 126
Software Function Index 128
Bibliography 133
Appendix A: Guide to Bibliography 163
A.1 Reference Categories 163
A.2 Recommended References 164
Appendix B: Coherence Definitions 165
B.1 Introduction 165
B.2 Binary Model o 165
B.3 Multistate Model — Traditional 166
B.3.1 Barlow and Wu (BW Class) [115] 166

Y

B.3.2 El-Neweihi, et al. (EPS Class) [121] 166

B.3.3 Butler (By Class) [178] 166
B.3.4 Butler (By Class) [117] 167
B.3.5 Griffith [124] 167
B.3.6 Natvig [135] 168
B.3.7 Block and Savits (BS Class) [144] 168
B.3.8 Borges and Rodrigues (BR Class) [116] 169
B.3.9 Ebrahimi [120] 169

B.4 Multistate Model — General 169
B.4.1 Hudson and Kapur (HK Class) [151] 169
B.4.2 Ohi and Nishida [136] 170
B.4.3 Boedigheimer [214] oo oo 171

B.5 Multistate Model Coherence Summaries 171
B.6 Continuum Model 173
B.6.1 Baxter [196] 173
B.6.2 Boedigheimer [214]o oo 173
Appendix C: Special Structure Definitions 174
C.1 Introduction 174
C.2 Definitions Based on Structures 175
C.3 Definitions Based on Equivalence Classes 175
C.4 Definitions Based on Boundary Points 176
C.5 Definitions Based on Rounded Structure Function Values 177
Appendix D: Probability Calculation and Bounds 178
D.1 Introductiono 178
D.1.1 Associated Components 178

D.2 Exact Calculation 179

D.2.1 Direct Enumeration oo 179
D.2.2 Inclusion-Exclusion 0oL 180

D3 Bounds. 181
D.3.1 Trivial Bounds oo oo 181
D.3.2 Path/Cut Bounds 181
D.3.3 Min/Max Bounds 182
D.3.4 Combination Bounds 182
D.3.5 Inclusion/Exclusion Bounds 183
Appendix E: Miscellaneous Theorems and Definitions 184
E.1 Component Redundancy 184
E.1.1 Parallel 184
E.1.2 Series 184

E.2 Component Importance., 185
E.2.1 Structural 185
E.2.2 Performance L o oo 186
Appendix F: Dynamic Properties 187
F.1 Binary Model 187
F.1.1 Notation 187
F.1.2 Lifetime Distribution Classes 188
F.1.3 Lifetime Distribution Closure 188

F.2 Bounding System Lifetime Distributions 188
F.3 Multistate Modelo oo 189
F.3.1 Lifetime Distribution Classes and Closure 189

F.4 Continuum Model 190

vi

Appendix G: Laplace Transform Reference

Appendix H: Continuous Distribution Reference

Appendix I: Software Documentation and Tutorials

Appendix J: Software Function Code
J.1 ContinuousOptimization
J.2 DeterministicAnalysis
J.3 Distributions
J.4 DynamicModels oo
Jb Measures
J.6 StochasticAnalysis

J.7 NewFunctions s

Pocket Material: Computer Disk

Vil

191

193

197

453
453
462
472
476
478
487
492

501

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

LIST OF FIGURES

General Structure Function Diagram 5
Quality Characteristic Diagram 13
Product Noise Diagram 14
Instant Relevance and Obsolescence Example 23
Gradual Obsolescence Fxample 24
Gradual Relevance and Obsolescence Example 24
Multistate Example System State Expectation 27
Multistate Example System State Variance 28
Multistate Example System Output Expectation 28
Multistate Example Lifetime-Weighted Measure 29
Parallel and Series Subsystem Notation 32
Customer Structure Selection Flowchart 35
Interpolation with a? =0 45
Interpolation with o = 1/1000 45
Interpolation with a? =1 46
Shepard’s Method Interpolation 46
Example 1 Interpolation, N =5 48
Example 2 Underlying Structure Function 49
Example 2 Interpolation, N =18 49
Monotonicity-Preserving Interpolation Grid for Example 2 54

Viil

4.9 Gridded Multilinear Interpolation, n =2 54

4.10 Non-Decreasing Interpolation, N =18, o =1/6 55
4.11 Monotonicity-Preserving Grid Point Calculation Order 57
5.1 Mlustration of $,,,(X) and spi,(x) Structures 59
5.2 Increasing/Decreasing Regions, n =2 59
5.3 Increasing/Decreasing Regions, n =3 60
5.4 Example 1 $,,4,(x) Structure Function 61
5.5 Example 1 $,,(x) Structure Function 62
5.6 Example 1 Interpolated Structure Function 62
5.7 Example 2 Underlying Structure Function 63
5.8 Interpolation for “test2” o oo 65
5.9 Smaz(X) Structure Function for “test2” 65
5.10 Spin(X) Structure Function for “test2” 66
5.11 Interpolation for “test2b” 66
5.12 Spax(X) Structure Function for “test2b” 67
5.13 Spmin(X) Structure Function for “test2b” 67
5.14 Interpolation for “test2¢” 68
5.15 Spmaz(X) Structure Function for “test2¢” 68
5.16 Spin(X) Structure Function for “test2¢” 69
5.17 Interpolation for “test2d” oo 69
5.18 Spmaz(X) Structure Function for “test2d” 70
5.19 $pin(X) Structure Function for “test2d” 70
5.20 Interpolation for “test2e” 71
5.21 Spae(X) Structure Function for “test2e” 71
5.22 Spin(X) Structure Function for “test2e” 72
5.23 Interpolation for “test2f” oo 72

X

0.24
2.25
5.26
5.27
5.28

6.1

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

Smae(X) Structure Function for “test2f” 73

Smin(X) Structure Function for “test2f” 73
Example 3 Full Structure Function 76
Example 3 Spin(x) Boundo o000 76
Example 3 Sp0.(x) Boundo 00000000 77
One-Step Transition Diagram 80
Traditional Discretization 91
Discretization Pattern 0oL 92
Bicycle System Underlying Structure Function 95
Dynamic System State Probabilities 105
System State Expectation 106
System Output Expectation 107
System State Varianceo 108
U(t) Function #1o 108
U(t) Function #2 109
U(t) Function #3 109
U(t) Function #4 110
System A Structure Function 112
System A Availability (at t =1), 112
System A State Expectation 113
System A State Variance 113
System B Structure Function 114
“Large Static System” System Diagram 115
Large Static System CDF 0. 117
Aviation Communications Markov Chain 119

8.18 Example 1 Quality Loss Function 123

8.19 Example 1 Distribution 124
8.20 Example 2 Quality Loss Function 125
C.1 Series System L 174
C.2 Parallel System 175

xi

1.1

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
5.6

8.1
8.2

LIST OF TABLES

Reliability Engineering Goals 2
Reliability Measure Building Blocks 16
plg;,t] Valueso 25
Rlg;,t) Values 26
DTE[¢;] Values o 26
Distributions of Selected Structures 31
Moments of Selected Structures 31
Symbology for Selected Structures 32
Data Set for a? Illustration 44
Example 1 Data o o 47
¢; Values for Example 1, o> =1/6 48
Example 1 Customer-Supplied Data 61
Example 2 Data Set Sizes 0. 63
Example 2 Expected System States 64
Example 3 Full Structure Function 74
Example 3 Customer-Supplied Data 75
Example 3 Component Probabilities. 75
Data for Bicycle System Scattered Data Interpolation 97
Bicycle System Upper Boundary Points 98

xii

8.3 Bicycle System Lower Boundary Points 98

8.4 Bicycle System Expected System States 99
8.5 Automobile Expected State of the Systems 101
8.6 Automobile System Rankings 101
8.7 Tire Example States 102
8.8 Customer-Specified Lower Boundary Points 104
8.9 State Probabilitiesatt=2. 105
8.10 Selected Reliability Measures 105
8.11 Values of DTE[] 107
8.12 U(t) Definitions and LWE Values 110
8.13 Continuum Example Component Distributions 111
8.14 System A Measures 114
8.15 “Large Static System” Component Distributions 116
8.16 Aviation Communications State Definitions 118
8.17 Aviation Communications Transition Probabilities 119
8.18 Example 1 Measures 124
8.19 Example 2 Measureso 125
B.1 Multistate Model Coherence Definitions. 172
F.1 Binary Model Lifetime Distribution Classes. 189
F.2 Binary Model Lifetime Distribution Closure 190
G.1 Table of Laplace Transforms 192

X111

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Dr. Kailash C. Kapur for
his assistance and guidance; this dissertation would not have been possible without
the benefit of his far-reaching and deep insights into reliability. In addition, thanks
are due to Dr. Stephen Wolfram, who provided an inspiring hint at a critical phase

in this project.

Xiv

Chapter 1

INTRODUCTION

1.1 Motivation

The approach which has traditionally been used for reliability modeling is to take
one of a product or service’s quality characteristics, functionality, discretize it into
a binary variable, and then use either “mean time to failure” or “the probability
it is still functioning” to quantify its reliability. Clearly, there are products and
services which the customer may honestly experience only as either functioning or
failing to function,! and there are products and services for which the customer might
identify either “mean time to failure” or “the probability it is still functioning” as
actually being synonymous with customer satisfaction. However, when the customer’s
experience or desires differ from this alternatives should be available.

The majority of this dissertation’s efforts stem from precisely two assumptions:

1. That a customer’s experience of product degradation over time may often be

more refined than only noticing “perfect functionality” and “complete failure.”

2. That a customer’s assessment of a product’s reliability can sometimes depend
on more than the product’s current state of functioning — that the product’s

performance at earlier times may also have an impact.

Stated plainly, the goal of this dissertation is to provide reliability practitioners

Isuch as certain elementary machine parts

and theorists with new models and tools based on these two assumptions. By ex-
panding the selection of available reliability measures along with the range of states
which products can be modeled to assume, numerical assessments of reliability may
become more capable of approximating what the customer’s assessment of the prod-
uct’s reliability will ultimately be. If this goal is achieved, it may become easier for
other researchers and engineers to incorporate reliability into more general models of
quality and customer satisfaction. Given the degree to which modern engineering and
management are re-orienting themselves to become more “customer-centered,” this
approach may prove to be of real-world value. The approach this dissertation takes
is also consistent with what at least one reliability researcher [250] has recommended

as potential goals for reliability engineering (see Table 1.1).

Table 1.1: Reliability Engineering Goals

TRADITIONAL IDEAL

Measurement (Statistical Estimation) | Improvement

Binary Multistate, Continuous

Accept times as a noise Achieve robustness

Probability models Utility, Customer satisfaction, Basis for
action

Statistical studies (Enumerative) Time — future (Analytical study)

Failure Transition, One state to another

System Models (Structure function) Customer Driven System Models

1.2 What Other Researchers Have Done

A large number of papers and books (most notably, [21, 66, 56]) have been written on

binary reliability models, which allow only two states of functioning for a system and

for each of its components (perfect functionality and complete failure). In recognition
of the fact that many systems exhibit noticeable gradations of performance between
these two extremes, over 100 papers (notably, [121, 115, 151, 163, 146]) have been
written in the last 20 years on the multistate model, which allows for any finite number
of possible states. In the last 14 years, approximately 10 papers (essentially, [198, 195,
196, 197, 205, 207] and a few others) have been written on the continuum model, which
allows for a continuum of possible states.

In the multistate model literature (see Appendix A), a large amount of attention
has been devoted to questions of “coherence”: how “unreasonable” systems may be
eliminated from consideration so that more powerful theorems may be proved about
those systems which were not eliminated. It is not clear how this benefits the customer
in any meaningful way.

With the exception of a few recent papers for multistate models [192, 145, 188,
194, 189], the question of what reliability measures to use for non-binary reliability
models has been completely unexplored. No papers whatsoever have addressed the

question of what reliability measures to use with continuum systems.

1.3 This Dissertation’s Original Contributions

For all model types, a major contribution of this dissertation is the creation and
development of a wide variety of reliability measures (Chapter 2). In some cases
these are new measures created during the course of this research, and in other cases
they are measures which had not yet been applied to the continuum case. Nowhere
else in the literature are reliability measures for binary, multistate, and continuum
models considered together with a common, unified notation.

The question of identifying the relationship between the system’s state and the
states of its components is addressed by drawing attention to the fact that specific

subsets of possible structures are quite common in the reliability literature, and that

for many of these structures parameters may be systematically found based on limited
customer input. Additionally, attention is drawn to the fact that systems of almost
arbitrary complexity may be assessed and bounded, regardless of the complexity or
nature of the components, if the complete system consists of modules from this subset
(Chapter 3).

Several new contributions are made in the area of continuum reliability mod-
els. Specifically, a method for approximating the structural relationship between the
components of a system and the system itself based on scattered-data interpolation
is developed (Chapter 4). This method is extended to allow for the coherence of the
customer-supplied data set to be insured in the resulting structure function interpola-
tion. A new type of “partial-information structure function bound” is also proposed
(Chapter 5). The use of Markov models for discrete reliability models is examined
(Chapter 6), and a new method by which a given discretization may be assessed is
proposed (Section 7.2).

In the continuum model literature, the examples considered are typically very
small, and comments are often made to the effect that more extensive or more gen-
eral computations are not practical. Another unique aspect of this dissertation is
the fact that it demonstrates computational techniques, generally based on numerical
integrations which take advantage of any component independence, for larger sys-
tems with complex, unusual, or mixed continuous/discrete component distributions
(Chapter 8).

Minor contributions are made through the identification of a simple coherence
definition which is valid for all model types (Section 1.6), in the use of mixed dis-
tributions for component states (Section 2.2), through the identification of reliability
bounds which are robust to lost information (Section 7.1.3), and in the extension of
parallel and series definitions to general multistate reliability models (Appendix C).

Finally, during the course of this research a complete and fully-documented soft-

ware analysis package for non-binary reliability models was created (Appendices I

and J) with the hope that this would encourage others to follow and participate in
non-binary reliability research. This software package is intended as an integral part

of this dissertation.

1.4 Basic Notation

Ax)

Figure 1.1: General Structure Function Diagram

The maximal state of a system or component corresponds to “perfect function-
ing,” the minimal state corresponds to “complete failure,” and other states (if any)
correspond to intermediary states of functioning. We assume that, from the point of
view of the customer, a state s; is preferable (or at least equivalent) to a state s for
a given system or component if s; > so.

The following notation may be utilized for any type of reliability model:

n = Number of components constituting the system (a finite positive integer)
C'={1,2,...,n} = The set of component indices

(); = State space of component 7, i € C

M; = max(); = Best state of component ¢
0 = min); = Worst state of component ¢

x; = State of component 1, x; € ;

x1,%a,...,T,) = Component vector, z; € §);

M= (M, M, ..., M,)
S=M xQyx--xQ, ={x|z €Q;} = Component vector space
¢(x) = Structure function yielding system state, ¢p(x) € 2, x € S

() = State space of the system

M = max () = Best state of the system

0 = min{) = Worst state of the system

Sk = {x | ¢(x) = k} = Equivalence class for system state k
y<x=y; <uz;Vie C, with y; < x; for at least one i € '
y<x=y; <ax;VieC
y>x=y; > x; Vi € C, with y; > x; for at least one 2 € C
y>x=y >x;VieC

(]{22‘7)() = (I],LEQ,...,xi_],k,$i+1,...7$n>,k GQi7iE C,XGS

Ix -yl =

X; = Random variable for z;, the state of component ¢, i € C'

X = (X1, Xo, ..., X,,) = Random variable of component vector
»(X) = Structure function, yielding random variable for system state, ¢(X) € Q
Q= Plp(X) = j], j€Q

Q=P X;>jl, jeQielC
vV = for all

When the random variables for the states of a system’s components are stochastic
processes (functions of time), the following expressions (or related ones) may be used.
The variable t may be dropped from expressions such as these when a time-invariant

case is being considered or when time is not of interest.

t = Time, t € [0, 00)
X;(t) = The state of component i at time ¢, i € C'
X(t) = (Xq(t), Xa(t), ..., Xn(1)

Fi[s,t] = P[X;(t) < s]
Fl[s,t] = Plo(t) < s
o(t) = ¢(X(t)) = The (random) state of the system at time ¢

Many examples and results in this dissertation make the assumption that the
random variables representing the component states for a system, X, Xs,..., X,
are mutually independent. Discrete random variables X;, Xo,...,X,, are mutually
independent if and only if P[X; = 21, Xo = 29,..., X,, = x,] = P|X; = 1]P[Xy =
xg] -+ P[X,, = z,| V (21, 29, ..., x,) € R". Continuous random variables X;, Xs,..., X,
are mutually independent if and only if flz1, xq, ..., 2, = filzi1]folza] - - fulzn]

V(xy, xa,...,2,) € R™ where f;|z;] is the probability density function of Xj.

1.5 Model Types

1.5.1 DBinary

The binary model allows two states of functioning for the system and for each of
its components: ¢(t) € {0,1}, X;(t) € {0,1}. These two states may be interpreted
as “complete failure” and “perfect functioning.” One scalar value is sufficient to

characterize the stochastic behavior of a binary system or component at any moment

in time: p(t) = Plo(t) = 1], p;(t) = P[X;(t) = 1]. An example of a system which
exhibits binary behavior is a light bulb, which can only be on or off. An unfortunate
fact is that “reliability” has often been defined in ways which imply the binary model;
for example: “Reliability is the probability that a product or service will operate
properly for a specified period of time under the design operating conditions without
failure.” [40]

The binary reliability model was the first reliability model developed, and there
have been no changes in this model’s definition since its formal introduction in [21]

and subsequent refinement in [16]. Its early history can be summarized as follows:

e During World War I, the concept of number of system failures per unit time

arose while comparing one, two, and four-engine military aircraft.

e During World War II, mathematician Robert Lusser derived the product proba-

bility law of series components while analyzing the performance of V-1 missiles.

e Around the time of the ICBM and Apollo projects, the Binary Coherent Sys-
tem was presented by Birnbaum et al. (1961), Fault Tree Analysis was created

(1962), and IEEE Transactions on Reliability was founded (1963).

1.5.2 Multistate

Early papers in multistate reliability [121, 115] expanded the binary model’s two
states to the following set: ¢(t) € {0,1,...,M}, X;(t) € {0,1,...,M}. Later
researchers [150, 151, 146] further generalized this model to allow different num-
bers of states for the system and each component: ¢(t) € {0,1,..., M}, X;(t) €
{0,1,..., M;}. The most flexible definition [188, 189] allows the states to be any
non-negative number: ¢(t) € {¢o, ¢1,...,0m}, G0 =0, ¢; < ¢ V j <k,
Xi(t) e {mio, xirs oo, Timy }, Tio =0, w5 <y, Vj<k.

For the sake of reference, the first definition shall be termed the “traditional” mul-
tistate model, the second definition shall be termed the “general” multistate model,
and the third definition shall be termed the “non-integerial” multistate model. The
binary model is a special case of the traditional multistate model, the traditional
multistate model is a special case of the general multistate model, and the general
multistate model is a special case of the non-integerial multistate model. Thus, theo-
rems proved for the non-integerial multistate model or the general multistate model
will apply equally to the traditional multistate model or the binary model.?

The “non-integerial” multistate definition definition allows components and sys-
tems to assume states reflective of their value to the customer [192]. Unless the
component and system states are allowed some real-world meaning (e.g. ¢(t) = 3/4
for 75% functionality, ¢(t) = 1 for 100% functionality, etc.) comparing different sys-
tems with different numbers of allowed states becomes problematic, measures such as
“state variance” lose their robustness (i.e. they change even when unused states are
added), etc. Also, in many cases it may fundamentally not be true that the jth state
of one component has the same intrinsic value to the customer as the jth state of a
different component.

An example of a component which exhibits multistate behavior is a computer
memory board with many memory chips, each of which may either function or fail to
function independently of the others [192]. A finite number of scalar values is sufficient
to characterize the stochastic behavior of any multistate system or component at any
moment in time: plo;,t] = Plo(t) = ¢;] V ¢; € Q or plxy;,t] = P[X;(1) = 2] V x5 €
Q;.

This model’s early history may be summarized as follows:

e The first non-binary reliability model (of any kind) was proposed in 1968 by

Hirsch, Meisner, and Boll [54] to model reuse of military supplies. According to

20ften, proving a theorem for the non-integerial multistate model is only a matter of changing
the notation in an existing proof for the general multistate model.

10

these authors, the idea for this model came from a certain Lt. Commander J. V.

Reilly, Jr. (U.S. Navy, Special Projects Office and Supply Systems Command).

e The traditional multistate model, which requires the components and the system
to have the same number of states, was independently presented in 1978 by two

different groups of researchers: El-Neweihi et al. [121] and Barlow and Wu [115].

e The general multistate model, which allows different numbers of states for the

components and the system, was developed in 1981 by Hudson [150].

1.5.8 Continuum

In 1984 and 1986, Baxter [195, 196] introduced the standard continuum reliability
model, which allows a system or component’s state to assume any value in a segment
of the real number line: ¢(t) € [0, 1], X;(¢) € [0, 1]. It should be pointed out that most
real-world systems and components exhibit continuous degradation of some form, and
so in the majority of cases the question should be whether it is feasible or necessary
to use a continuum model, and not whether this model’s use is philosophically jus-
tifiable. An example of a continuum system is an automobile tire, the performance
of which may degrade continuously as the tread wears. The stochastic behavior of
continuum systems and components may be specified through a Cummulative Dis-
tribution Function (F[s,t] = Po(t) < s], Fils,t] = P[X;(t) < s]) or, for absolutely
continuous distributions, a Probability Density Function (f][s,t], fi[s,t]).

In real-world analyses, one would expect few continuum systems to have abso-
lutely continuous distributions for their states. For example, the response of an audio
speaker may gradually deteriorate over time, but it is also subject to catastrophic or
“hard” failure wherein the system transitions to its lowest possible state and remains
there. For such a system there should be a non-zero probability of being in state 0, and

so the distribution for its state should be mixed (continuous and discrete). Indeed,

11

this would seem to be the case for any non-repairable continuum system [207].

For the continuum model, there are an infinity of possible values in the interval
[0, 1] and hence an infinity of possible state vectors and equivalence classes. Many
equivalence classes may contain an infinity of these vectors. Since it is philosophi-
cally the customer who specifies the structure function, we must have some way of
determining or estimating it based on the customer’s demands. In the binary and
multistate cases, this can always be done using upper or lower boundary points (a
special subset of all possible component vectors). In the continuum case this subset
may be an infinite set (that cannot be obtained from the customer in a finite amount
of time), which is the reason this dissertation proposes scattered data interpolation

methods for continuum models.

The earliest continuum reliability model work by Block and Savits [198] considered
the state space for the system and for each of the components to be the non-negative
orthant of the real number line.> Work was continued by Baxter [195, 196], who
examined two specific structure functions (¢ and 7) and dealt with general topics of
component relevance. Baxter and Kim [197] created a new continuum definition for
boundary points along with enhanced bounds on the distribution of ¢(x). Montero
et al. [205] proposed another continuum definition for boundary points, improved on
the reliability bounds proposed by Block and Savits [198], and developed a technique

for approximating a continuum model through discretization.

The continuum model appears to have originally arisen out of mathematical in-
terest; possible applications were proposed only after its initial description in the

literature.

3 Although this has not yet been explicitly commented on in the literature, there are an uncount-
able infinity of numbers in [0, 1] and [0, 1]™ just as there are in R and R}. Since one may, through
a suitable non-decreasing function, map [0, 1] into R and [0,1]” into R}, the restriction of the
state space for the system and components in continuum models to [0, 1] and [0, 1]™ may be done
without loss of generality.

12

1.6 Model Coherence

Since the introduction of the binary coherent system [21], a great deal of attention
has been devoted in the reliability literature (especially in the non-binary reliability
literature) to definitions for coherence — specifying a set of properties which “reason-
able” systems should have, and then proving theorems for this restricted class rather
than for any general mapping from S — (). This dissertation proposes one unified
definition for coherence which is valid for all model types:

Definition: A system is coherent if it exhibits these properties:

L o(x) > oy) Vx>y (monotonicity)
2. 9(0)=0 o(M)=M (proper extrema)
3. supyeg[o((M;)i,x) — ¢(0;,x)] >0 VieC (component relevance)

For models where Q@ = Q; = [0,1] Vi € C, this definition reduces to Baxter’s
definition of Weak Coherence [196] for continuum models. For models where Q =
Q; ={0,1,2,..., M} Vi € C, this definition reduces to Butler’s definition of Weak
Coherence [117] for multistate models. For models where 2 = ; = {0, 1} Vi € C, this
definition reduces to the standard definition of binary coherence given by Barlow and
Proschan [16]. The “monotonicity” property in the above definition is also referred

to as the “non-decreasing” property.

1.7 Reliability and Quality

New research [244] makes a strong case for Customer Satisfaction being a function
of both Quality and Customer Expectations. In a manner consistent with this new
research, this dissertation defines customer satisfaction as the degree to which, ac-
cording to the customer, the quality of a product or service satisfies his or her needs

and desires. According to the [SO 8402 International Standard [246, page 6], quality

13

is “the totality of features and characteristics of a product or service that bear on
its ability to satisfy stated or implied needs.” Note that this definition of quality
implies that one may think of it as a set of variables representing a product or ser-
vice’s relevant features and characteristics (see Figures 1.2 and 1.3); these features
and characteristics are functions of time, and may include such things as beauty, func-
tionality, etc. In this framework, quality has as its domain all aspects of the product
or service’s performance and existence which can impact the customer, but sets aside

any considerations external to that product or service.*

Changes in quality characteristics over
time impact customer-assessed reliability.

Figure 1.2: Quality Characteristic Diagram

A typical modern textbook [56, page 3] defines Reliability as “the ability of an item
to perform a required function, under given environmental and operational conditions
and for a stated period of time.” Note that this definition is compatible with non-
binary reliability models, due to the (potentially) non-binary nature of the term
“ability,” and the fact that “required function” may include aesthetic considerations
that are important to the customer. Philosophically, the customer does not experience

the reliability of an item directly; what he or she notices is changes in the quality

“*such as responses based on changing markets, competitors’ products or services, etc. which more
properly fit under the “customer expectations” portion of the analysis presented in [244].

14

OUTER NOISE
* ENVIRONMENT
* HUMAN ERROR

INNER NOISE
* DETERIORATION

BETWEEN PRODUCT NOISE
*VARIATION
* IMPERFECTIONS

Figure 1.3: Product Noise Diagram

characteristics of that product or service, which are combined by him or her through

some unknown function to affect his or her customer satisfaction.

Chapter 2

RELIABILITY MEASURES

2.1 Introduction

Because different applications and customers may require the “reliability” of a system
to be strong in different ways, a number of different reliability measures should be
available to the customer so that he or she may choose the one most suitable to the
application at hand. As quality is defined by the customer, and reliability is a quality
characteristic, the customer should be free to specify how reliability is measured for
him or her. By providing a variety of different measures and suggesting situations in
which each one may be a good choice, it is hoped that reliability analysts will more
easily be able to find measures that match the customer’s assessment of the product’s

performance over time.

Unfortunately, as Yang and Xue [194] point out, “Very little effort has been made
in the investigation of important issues such as what the appropriate dynamic reliabil-
ity measures are...” Indeed, the only reliability measures which have been mentioned
for the continuum model at all so far have been the expected value E[¢] (in [195, 212]),
Pl¢ > s] (in [197]), and P[¢ > s] (in [198, 205, 210]). Therefore, this chapter exam-
ines a variety of customer-centered reliability measures, generalized to multistate and
continuum contexts. Over 43 potential reliability measures were examined during the
course of this research, and only the most valuable ones are developed in this chapter;

please see the “Measures Package” in Appendix I for the additional definitions.

16

Table 2.1: Reliability Measure Building Blocks

Fls, 1] Elp(1)] El¢* (1))
Binary 1—p(t) for0<s<1 p(t) p(t)
Multistate Zv(pj <s plo;.t] Zvj ¢;p9;. 1] ZVj Qﬁp[%y t]
Cont. (PDF) Jo f1&, 1] d¢ fol sfls,t]ds fol s*f[s,t]ds
Cont. (CDF) Fls, 1] [3(1 = Fls,t])ds | [, 2s(1 — F[s,t]) ds

2.2 Reliability Measure Computation and Definitions

Each reliability measure presented in this chapter is a function of certain basic quanti-
ties which are independent of the type of model being used (see Table 2.1). Derivations
for the expressions contained in the “Cont. (CDF)” row of this table may be found
in [263]. Although Table 2.1 and the reliability measures we present in this section
are illustrated using system notation, applying them to components is a matter only
of substituting component notation (please see Appendix E for “component impor-
tance” measures). Fach of these measures is equally applicable to binary, multistate,
and continuum models.

It should be noted that any multistate or continuum model may be converted to
a binary model by choosing a state s. such that any given state s is considered to be
“failed” if s < s. and “functioning” if s > s.. One defines p(t) = 1 — F[s,, 1], and
then may employ any of the measures and techniques developed for binary models.
Measures which are constructed through this reductionist process will not be empha-
sized in this chapter, as they are already adequately described throughout the binary
model literature. Finally, as regards the first column of Table 2.1, please note that
Fls,t] =1Vs > M and F[s,t] =0Vs <0.

The functions p(t), p[¢;, t], f[s,t], or F[s,], whether for the system or (more likely)

for components may be available as a result of experiment, a prior: assumptions,

17

or (for discrete cases) as a result of Markov modeling (see Chapter 6). For the
continuum case, it is clear that continuous distributions may be required to express
the probability of the system being in a particular segment of the interval [0, 1] at
some time t; however, discrete distributions may be required as well: for example,
it is plausible that for non-repairable systems there will always be some (non-zero,
increasing) probability that P[¢(t) = 0]. Thus, in the most general case we will
have distributions which are mixtures of discrete and continuous probability mass
and density functions (the only other category of distributions, singular distributions,

does not have any clear role in reliability theory [268]).

2.2.1 Moment-in-Time

These measures require knowledge of the probability distribution, first moment, or

first and second moments for the system’s state at only one moment in time t.

Awvailability

Als,t] =1 — F[s, 1] = Plp(t) > s] (2.1)

This measure is of value when a particular set of states is of interest to the
customer (possibly states which when reached imply that the system should be re-
paired or discarded), or when functionality at a particular point in time (such as
the end of a warranty period) is of interest. When the system under consider-
ation is non-repairable, A[s,7| = R|[s, 7], where R[s,7| (the “survivor function”)
is the probability that ¢(t) > s V t € [0,7]. For non-repairable binary models,
p(t) = A[0,t] = R(t) = E[¢(t)]. For repairable systems, one may wish to exam-
ine the steady-state availability AS[s] = lim; . Als,t], which (if the limit exists)
will express the steady-state probability of being above state s. For non-repairable
systems, one could define Bls,a], which is a time such that R[s, B[s,a]] = 1 — «;

for binary models B[0,0.10] would be equivalent to the traditional “Bjq life.” For

18

any type of system, one might be interested in examining the “average availability”
AV([s, 7] = 1 [Als,t]dt, which is the average proportion of time in [0,7] that the
system will be above state s. With the exception of Bl[s, a] which has range [0, c0),
these measures have range [0, 1] with higher values superior. A measure very similar
to Als,t] was proposed by Butler for the multistate case [178], and it has also been

examined in the continuum model literature.

State Expectation

Elp(1)] (2.2)

This measure is the expected state of the system. It is intuitively familiar because
it is equivalent to R(t) for binary, non-repairable systems, and because it can be easily
explained. It may be a useful measure in cases where (like Availability) particular
times in the product’s life are of interest, but (unlike Availability) no single state or
states may be identified as catastrophic. For repairable systems ES = lim;_.., F[¢(t)]
may be of interest. These measures have range [0, M| with higher values superior.
This measure was proposed very early in the study of multistate reliability, and has

also been examined in the continuum model literature [121].

State Variance

Vp(t)] = E[¢*(t)] — E[o(t)]* (2.3)

There are many real-world situations in which the variance of the system state may
be of great interest, such as when consistent performance of the product is critical, or
when a repair schedule must be maintained without expediting. The state variance
of most non-repairable systems reaches a maximum at some t’ > 0, which may be
of interest to customers concerned with consistent performance. This time may be

[¢(t")]

found by solving v —— = 0 for ¢’ or through global maximization. The time ¢’

19

has range [0, 00), and V[¢(t)] has range [0, MTQ] with lower values superior. Although
the customer may not have advanced knowledge of probability, it could be easily
explained that this measure provides a sense of the “spread” in the possibilities for
the product’s performance at a given time.

It may also be of value to consider the integral of State Variance from time 0 to

time 7, called CSSDIr].

2.2.2 Finite-Time

These measures require knowledge of the probability distribution, first moment, or

first and second moments for the system’s state over a span of time ¢ € [0, 7].

Output Expectation

OF[r] /0 " Elo()]dt (2.4)

For products which are used over a period of time, a reliability measure which
summarizes the product’s time-dynamic performance is desirable. If a product will
be used over t € [0, 3] and one design tends to degrade near t = 1 while another design
degrades closer to t = 2, OE[3] would capture this distinction while R][s, 3] would not,
hence accurately reflecting the fact that it may be value to have use of the product’s
higher performance over ¢ € [1,2].

The measure (2.4) is the expected value of [¢(t) dt and has range [0, M7] (higher
values superior). If one may interpret the state of the system ¢(t) as being akin
to “Output per Unit Time” (as one might for many process industries), then one
may interpret this measure as the expected total output that will be produced over
t € [0, 7]; it is the clarity of this measure’s interpretation for process industries which
has led to the measures (2.4), (2.5), and (2.7) being termed “output” measures in

this chapter. These reliability measures are referred to as “throughput” measures

20

in [188], “accumulated reward” measures in [192] and “expected performance utility”
measures in [194].

Many variants of this “output expectation” measure are possible. One may sub-
tract it from M7 to obtain the Lost Output Expectation (LOE[T]), one may divide
it by M7 to obtain the Scaled Output Expectation (SOE[7]), and one may subtract
it from M7 and then divide the difference by M7 to obtain the Scaled Lost Output
Expectation (SLOE[T]).

Output Variance (Upper Bound)

Using principles described in [188,; 275], we may calculate an upper bound on the
(MT)2

variance of fo t)dt. This measure has range |0, |, lower values superior. It

may be of special interest when fo t) dt has a direct economic or productivity in-

terpretation.

OVUB[r (/ NGO dt) —(/OTE[qb(t)]dt)Q (2.5)

One may use this measure along with Chebychev’s theorem to form probability

bounds around [¢ o O(t)dt:

OEfr /OVUB / S(0)dt < OE[] + OVUB[]

2.2.3 Infinite-Time

>1—«

These measures require knowledge of the probability distribution, first moment, or

first and second moments for the system’s state over all times ¢ € [0, c0).

Dwell Time Expectation

DTE[s] = / " Rls. 1) dt (2.6)

21

For non-repairable systems, DTE]s| is the expected length of time the system will
remain (“dwell”) above state s. In the binary case, DTE[0] = MTTF. Several vari-
ants of this measure are possible, including “On-Stream-Availability,” which is the
expected proportion of the system’s lifetime that it spends above state s. One could
similarly examine Dwell Time Variance: DTV([s] = [;* 2(R[s,] dt — (f,° R][s,] dt)Q.
DTE[s| may be a useful measure when the customer will begin searching for a re-
placement for the product as it begins to decay, though this search progress may be

accelerated by further decay.
Total Output Fxpectation

TOF — /0 T Bl dt 2.7)

If the above integral converges, it may be interpreted as the average total “output”

that will be delivered by the system: TOE = lim,_, OE[7]. For repairable systems,

OESS = lim,_, OETH may be a useful measure. For non-repairable systems one might
wish to examine T'[a], which we define as a = %. Thus, 7[0.95] is the time at
which the customer would expect to have received 95% of the total output (“benefit”)

the system is expected to yield.

Lifetime-Weighted Expectation

LWE[U] = /0 S U Bl dt (2.8)

This measure attempts to capture the degree to which a product satisfies cus-
tomer needs and desires over its entire lifetime. The need for such a measure was first
articulated in 1969 in a paper for binary reliability models [190]. Essentially, LWE
considers the performance of the product over all time, weighted by a non-negative
function U(t) which expresses the degree to which the customer is potentially im-

pacted by the product’s performance at each moment in time. The motivation here

22

is that, for many types of consumer products, it is unlikely a customer would react as
strongly to product degradation late in a product’s life (when it may be rarely used
or may be about to be replaced with a more aesthetically or technologically advanced
product) as early in the product’s life. The default assumption implicit behind many
binary reliability analyses — that the product is used uniformly and/or “cared about”
equally until some future time when it is instantly discarded — is rarely realistic for
consumer products.

U(t) may also be a PDF for the time-to-occurrence of some future event; in this
case, LWE may be interpreted as the expected state of the system at the time of
that event. LWE reduces to TOE when one selects U(t) = 1, and to OE[r] when one
selects

1, 0<t<r
U(t) = (2.9)

0, otherwise
Note that if [;°U(t)dt converges, LWE will also converge. Scaling U(t) so that
fooo U(t) dt = 1 may simplify the comparison of different systems. When scaled in this
way, LWE[U] has range [0, M], higher values superior.

“Instant Relevance and Obsolescence” (see Figure 2.1) is well-characterized by
U(t) functions with shapes similar to a Uniform distribution’s PDF. This weight
function may be appropriate when it is known with certainty over what time interval
the product is needed, and that while the product is needed it is of equal importance
at all times. For example, if a new computer printer is purchased with the intent
of upgrading in exactly six months, this weight function (uniform, min = 0 and
max = 6) may accurately reflect the customer’s level of interest in the product.
Setting min # 0 may reflect buying and using the product before it is actually needed.
If the product may be sold for some salvage value after time max, one could imagine
utilizing the delta function at t = max as part of the U(t) function. Of course, if

there is a time-varying pattern of customer interest in the product from min to mazx,

23

one may use some other continuously-varying PDF, truncate it at min and maz, and

scale.

0.8/

0.6/

0.4/

0.2

t

0.5 1 15 2 2.5 3

Figure 2.1: Instant Relevance and Obsolescence Example

“Gradual Obsolescence” (see Figure 2.2) is well-characterized by U(t) functions
with shapes similar to the Exponential PDF, the HalfNormal PDF, and the Log-
Normal PDF. This class of weight functions may be appropriate in cases where the
product is of greatest importance to the customer when first purchased, but becomes
less important to the customer as time goes on. It may be ideally suited for indus-
tries such as the children’s toys and fashion apparel industries (which exhibit inherent
customer restlessness), and for consumer electronics which the consumer intends to
eventually replace with more advanced technologies.

“Gradual Relevance and Obsolescence” (see Figure 2.3) is well-characterized by
U(t) functions with shapes similar to the Chi PDF, the ChiSquare PDF, the Gamma
PDF, the Rayleigh PDF, and the Weibull PDF. This class of weight functions is of
value when the product rises in importance to the customer after it is first purchased,
and then later decays in importance. An example might be a product which was

purchased to be used during an emergency which will occur at some unknown point

24

0.5 1 15 2 2.5 3

Figure 2.2: Gradual Obsolescence Example

in the future.

0.4}
0.3}
0.2}
0.1}

t

0.5 1 15 2 2.5 3

Figure 2.3: Gradual Relevance and Obsolescence Example

The only caution is that one should compute U(t) in such a way that declining
U(t) values are not caused by declining performance of the products used to calcu-
late it; the goal is to capture patterns of voluntary product-usage changes, generally

due to technological obsolescence or inherent customer restlessness rather than poor

25

system performance in an absolute sense. Doing otherwise would neglect (by failing
to reward) the possibility of improving the customer’s experience of the product by

exceeding his or her expectations.

2.3 Multistate Example

For this simple multistate example we assume the system begins in state ¢3 = 1,

transitions to state ¢y = %, then transitions to state ¢ = 3, and finally transitions to

3
state ¢g = 0 where it remains. It spends a length of time in each of the three states
@3, 09, and ¢ governed by an exponential distribution with common parameter .
In cases such as this where one has a finite number of states and exponential
transition rates, continuous-time Markov chain theory may be applied to calculate

the probability of being in each state as a function of time (see Chapter 6). We

summarize these probabilities for this example in Table 2.2.

Table 2.2: p[¢;,t] Values

J || ¢ | ples,t]

010 | g7 (=24 2e™ — 2tA — 12)?)
L & | ge7™2A2

2 % e

31 |e™

For this system, we can calculate R[¢;,t] and DTE[¢,] (as given in Table 2.3 and
Table 2.4) along with the selection of reliability measures given in (2.10)-(2.13).

Elo(t)] - %e)‘t((i AN £ A22) (2.10)

26

Table 2.3: R[¢;,t] Values

J || ¢i | Rl

000 | Le™2+2n+ 1227
Ll g | e+t

2 % et

341 [0

Table 2.4: DTE[¢,] Values

J || ¢i | DTE[¢;]
010 %
1 ERE:
203 |x
311 |0

1
VIp(t)] = == 2M[36(eM — 1) 4+ 16(e™ — 3)At 4 2(eM — 14)A%12 — SN2 — A

36
(2.11)
12 — e (12 + 6AT + A272)
OF|7] (2.12)
6
TOF - % (2.13)

Let us assume that customer usage patterns for this type of product are being
assumed through comparison to similar products, and it has been found that product
usage decreases exponentially over time: U(t) = ve™®. With this usage function, we
calculate LWE as a function of A and v: IWE[U] = %W.

For the sake of illustration, several of these measures are graphed here with A = 3.

27

In Fig. 2.4 we can see the expected state of the system decreasing to 0 as ¢ increases,
as one would expect for a non-repairable system. In Fig. 2.5 we can see the variance
of the system state reach its maximum at ¢ = 0.60 and then decay toward zero as
the expected state of the system approaches 0. In Fig. 2.6 we can see OE[7]| approach
TOE = % as 7 — oo. In Fig. 2.7 we can see how LWE changes as a function of v; as
v is increased, U(t) decreases more rapidly, which causes the LWE reliability measure
to increase towards its maximum of 1 due to the fact that the system’s performance

at large values of ¢ does not impact the customer as significantly.

Efo(t)]
1

0.8}
0.6¢
0.4¢

0.2¢

t
0.5 1 15 2

Figure 2.4: Multistate Example System State Expectation

28

0.08|

0.06¢

0.04¢

0.02¢

t

0.5 1 15 2

Figure 2.5: Multistate Example System State Variance

0.6}
0.5}
0.4}
0.3}
0.2}
0.1¢

T

0.5 1 15 2

Figure 2.6: Multistate Example System Output Expectation

LVE [U[v]]

0.8}

0.6f

0.4+

0.2}

2 4 6 8 10

Figure 2.7: Multistate Example Lifetime-Weighted Measure

Vv

29

Chapter 3

SELECTION-BASED STRUCTURE FUNCTION
CONSTRUCTION

3.1 Introduction

It is often possible to identify the nature of a subsystem’s structure function based
upon engineering knowledge — indeed, performing this task is a general requirement
in Fault Tree Analysis [56]. Many types of structure functions appear again and again
in real life and in the reliability literature, and for many of these structure functions
probability distributions (or moments) may easily be found based on component prob-
ability distributions (or moments). The results in Tables 3.1 and 3.2 may be used to
quickly compute the reliability measure building blocks identified in Table 2.1 for five
common subsystem structures, hence allowing easy computation of reliability mea-
sures for large and complicated systems based on combinations of these particular
subsystems; notation which is used in this dissertation for these common structures
is illustrated in Figure 3.1 and Table 3.3.! For systems or subsystems which cannot
be further subdivided or simplified, or which do not have a form given in Table 3.2,

the expressions (3.1), (3.2), and (3.3) can always be used.

It is assumed in this chapter that the components are mutually statistically in-

dependent and that each component appears in only one subsystem (assuring inde-

In Table 3.3, “Min Req.” and “Max Req.” is the minimum number of components that must
be in their minimal (maximal) states for the system to be in its minimal (maximal) state. It may
also be taken as the minimum number of components that must have a non-zero probability of
being in their minimal (maximal) states for the system to have a non-zero probability of being in
its minimal (maximal) state.

31

pendence between the subsystems). It is also assumed that, for multistate models,

Q= {o(x) | x € S} (in other words, that the state space for the system is defined

by the set of states that the given structure function and component state space will

allow).?
Table 3.1: Distributions of Selected Structures
O(X1, Xa, ... Xy) || Fls,t]
max (X1, X, ..., X,) | [T, Eils. t]
min(Xy, Xo, ..., X,) | 1=TI",(1 = s, t])
Table 3.2: Moments of Selected Structures
(X1, Xa,. .., Xy) Eg(1)] E[¢*(t)]
max(Xy, Xo, ..., Xo) | [0 —TIr, Fils,) ds | f;7 2s(1 —I7, Fils, t]) ds
min(X1, Xa, ..., X,) || fo (TTey (1= Bils, 1) ds | [, 2s(TT, (1 = Fils, 1])) ds
i X SO EIXG () 2 (i EIXE(®)] +
2370 i EIXG(0]B[X(1))
[X [EIXi(1)] [T, BIX2(1)
1-TLL (1= X3) -] A= EX:0)]) |1 = 2[[LQ0Q — EX@O)]) +
[T (1 —2B[X;(1)] + E[X7 (1))

E[¢(t>]_/0 /0 0 " b1, s w0) dF [, (AP,] - dF [, 1] (3.1)

2 Alternately, one may choose for multistate models to define versions of structure functions where
the system state is rounded up, down, or to the nearest available state (i.e. rounded from the system
state the original structure function would have specified to an adjacent allowed state s € Q).

32

Table 3.3: Symbology for Selected Structures

O(X1, Xo, ..., Xp) Symbol | Min Req. | Max Req.
max (X, Xo, ..., X,,) || maxor T | n 1
min(Xy, Xo,..., X,) || minor | |1 n
i X 2 n n
I[- X I1 n
1-Tm, (1 - X)) I n 1

New Old

Xl
C l — — x X *—0 0 —
e o o i i
N

@X)=min[x;,X,,...X]
F(8)=1-(1F(5)) (1F(9)) (1F4(9)) (1-F (9))
X —
Xy T o
e o o °
)(n—

]
QX)=mMax[X;, Xy, ... X |
F()=F,(9F (9)F5(5) F(9) L %

Figure 3.1: Parallel and Series Subsystem Notation

33

My Mo Mnp,
E[¢2(t)]_/0 /0 o [) B o B 1) B

(3.2)

My Mo My,
Fls,] —/0 /o /0 lp(xy, za, ... xn) < s|dFy[xy, t|dFS[za, t] - - - dF, |2y, U

(3.3)

1, o(xy,z9,...,2,) <5

[[p(z1, w2y ...) < 5] = B (3.4)

0, otherwise
In Equations (3.1), (3.2), and (3.3), dF}|z;, t]| may be replaced by f;[x;, t]dx; when
the distribution for component ¢ is absolutely continuous and a PDF for it may be
computed. Similarly, []} , dF;[z;, t] may be replaced by the appropriate Riemann
or Stieltjes expression in cases where the components are not mutually statistically

independent, and so must be specified by a joint probability distribution.

3.2 Adding Additional Parameters

If more flexible versions of the functions listed in Table 3.3 are desired, additional pa-
rameters can be added which are ultimately specified through a finite set of questions
to the customer. When creating new structure functions, it may be important know
whether or not they are coherent; the expanded functions given in this section are all
coherent by the definition presented in Section 1.6.

Following each definition given below is an expression for determining the unknown
parameters a; based on customer input; please note that the expressions for a; should

be modified if 1/2 is not a valid system state for the model in question.?

3The effects of exponents on components in coherent continuum models may be stated simply:

having an z* term (a; > 0, a; # 1) will increase the positive effect of z; if a; € [0,1) and will
increase the negative effect of x; if a; € (1,00). As a; — oo™ or a; — 0T, the mapping for z;
0+
i

approaches a binary mapping: z$° — 1 if ; = 1, 0 otherwise; 2 — 0 if z; = 0, 1 otherwise.

34

Generalized Series: ¢(x) = min{z{*, 252, ..., 2%}, a; = In[¢(1/2;,1)]/In[1/2]

Generalized Parallel: ¢(x) = max{z{", 3% ..., 2%}, a; = In[p(1/2;,0)]/In[1/2]

Generalized Product: ¢(x) = z{'25* -+ 2%, a; = In[¢(1/2;,1)]/ In[1/2]

Generalized Coproduct: ¢(x) =1 — (1 — 1) (1 — 29)?2 -+ - (1 — x,)*"
a; = In[1 — ¢(1/2;,0)]/In[1 — 1/2]

Generalized Average: ¢(x) = ayx1+agzs+- - -+a,x, (Where a; +as+---+a, = 1)
a; = ¢(07 11')

Generalized k-out-of-n: ¢(x) = kth greatest of {z{*, x52, ..., "

a; = In[p(1/2;, {k — 1 components in state 1,n — k in state 0})]/In[1/2]

Constructing a subsystem from this set is therefore a three-step process (see Fig-

ure 3.2):

1. Select the function type.

2. Inquire as to whether there is symmetry in any components (defined here as
components which serve the same roles and hence should have identical param-

eters).

3. Determine unknown parameters through a set number of questions. For exam-
ple, if a continuum subsystem is generalized series and there are no symmetries,

each a; may be determined by asking, “What is the value of ¢(x) for (1/2;,1)?”

In o

In this case the customer’s response, «;, is related to a; by a; = 5 7

11eYOMOT,] UOTPO9[9] 9INJONIIS JOWOISN)) :g°E oINIT]

35

(e X =()0 L({!x "2 Ixonsers

(%-T) 7 (3%-T) (%)) T=(x)¢p

{7 g PXIXRIN=(X)

-19p10-yp)=(x)9

sanbiuyda] annejodiaju| Aojdwy
pue ‘4awo3sn) ayl wodj eyeq uleyqo

\

el XT) o (XT) o (X-T)-T=(%)

SOA

SaA

SaA ON

X X IXJonselS

oI 2XTX)=(X)P -18pI0-Upi=(x)9

QU000 | (XX PIUIN=00D | [X B TX=(XP

o

é|ed1IBWWAS
syusuodwo) ||V

é|ed11WwWAS
sjusuodwo) ||y

é |21 WWAS
syusuodwo) ||V

é|ed11WwWAS
sjusuodwo) ||y

$3A é|ednPwwAs

syuauodwo) ||y

s1n) pue syied
w044 UOIIdUNS BINIINIIS p|ing

A

S9A

SOA

$91B1S duIWIR1RQ
BWaJIX3-UON ue)d

$9181S dUIWIRIRQ
BWaJIX3-UON ue)d

¢1uauodwo) 1591ealn Upt 4 IxTe4TXTR)=(

y» Aq pauiwialaq

ésInD/syied Ajoads
01 YSIA\ Jawo1sn) sa0(Q

OoN
oN

ad.ieq |lews

é38eJany
pa1y3ioM Ag paqlasag

é|eaupwwAs
syusuodwo) ||y

mmucwp_OQEOU snonuljuo)

aABH WI1sAS sao(q A

SO\

SaA

éaielis

SO\
aUIWIIaQ BWJIXT ue)

1ElS

U/(UX+ x4 TX)=(X)

36

3.3 Boundary Point Analysis

3.3.1 Introduction

The methods described in Section 3.2 only work when the structure function for a sys-
tem or subsystem has one of the given forms.* The set of possible coherent structure
functions is much larger; to unambiguously specify an arbitrary coherent structure
function the use of “boundary points” has been recommended in the literature.

Any coherent structure function may be completely specified by the customer
through an enumeration (finite, in the case of discrete models) of the upper or lower
boundary points for that structure function. For discrete models, boundary points
have a very simple interpretation (i.e. “For what component state vectors do a de-
crease in any component’s state force a decrease of the system state?”). Algorithms
outlined in [214] which can generate the structure function based on the upper or
lower boundary points and which can generate the upper (or lower) boundary points
based on the lower (or upper) boundary points are included in the software package
which accompanies this dissertation.

As is discussed in Chapter 4, although boundary points are mathematically well-
defined for continuum models, it is unclear that they have any practical value in terms

of allowing the customer to specify the structure function of continuum models.

3.3.2 Notation
General

e x is a lower boundary point to level k if ¢(x) > k and y < x implies that
o(y) <k, k#0

e x is an upper boundary point to level k if ¢(x) < k and y > x implies that

4Although for practical reasons many systems may be made up exclusively of modules with these
common forms.

37

oy) >k, k#M

Ly, is the set of all lower boundary points to level k&

U} is the set of all upper boundary points to level k

For x € Lk, Lk(X) = {(Z, $Z> YV, 7& O}

For x € Uy, Ur(x) = {(i, ;) V; # M;}

Continuum Models

Unlike discrete models, attention must be paid to continuity issues when using bound-
ary points for continuum models. Using the standard continuity definitions given
below, “Lower boundary points to level k are only defined when a [continuum model]
is right continuous and upper boundary points to level k are only defined when a
[continuum model] is left continuous.” [214]

These standard continuity definitions may be found in Montero et al. [205]:

e A continuum structure function is left-continuous at y if for each x € S and for

each € > 0, thereisa d > 0 such that |p(x) —¢(y)| < € whenever y—d1 < x <.

e A continuum structure function is right-continuous at y if for each x € S and for

each € > 0, thereis a d > 0 such that |¢(x)—¢(y)| < € whenevery < x < y+41.

Multistate Models

Since there are a finite number of boundary points in multistate cases, the following

enumerative notation is sometimes used:

o [, is the jth lower boundary point to level k, k # 0, j € {1,2,...,ri}, Li; € Ly

38

e Uy, is the jth upper boundary point to level k, k # M, j € {1,2,..., s},
Ukj e U,
Binary Models

The following notation is sometimes used in place of the general boundary point
notation when the model under consideration is binary. Essentially, a minimal path
P; is the set of component indices 4 for which z; = 1 for a given lower boundary point
L;;, and a minimal cut K is the set of component indices ¢ for which x; = 0 for a

given upper boundary point Up;.

Path Vector A vector x satisfying the condition that ¢(x) = 1
Minimal Path Vector A path vector x where ¢(y) = 0 for all y < x

Minimal Path Set The set P; = {i | z; = 1} formed from the jth minimal path

vector x (let r indicate the number of minimal path vectors)

Cut Vector A vector x satisfying the condition that ¢(x) = 0
Minimal Cut Vector A cut vector x where ¢(y) = 1 for all y > x

Minimal Cut Set The set K; = {i | ; = 0} formed from the jth minimal cut

vector x (let s indicate the number of minimal cut vectors)

3.3.8 Structure Function Representation by Boundary Points
General Multistate Model

This technique was introduced by Block and Savits [144]. Its basic approach is to
temporarily transform the original structure function (written in terms of n multistate
variables) into an equivalent structure function written as a series of binary variables.

This may be done with either lower or upper boundary points.

39

Lower Boundary Points

The customer specifies lower boundary points to each level &k, k # 0. We compute

o(x) = 3 6 (y) (3.5)
k=1

where
0, o(x)<k
¢"(y) = max min_ y; = (3.6)
xcLy (i,75)eLi(x
1, o(x)>k
and
Oa X < .]
Yij = (3-7)
1a Z; Z .]

Upper Boundary Points
The customer specifies upper boundary points to each level k, k # M. We compute

M—1
P(x) = o*(y) o
k=0
where
0, o(x) <k
¢"(y) = min _max y;; = >
x€U (4,5)€Uk (%) L, ¢(x)>k
and
0, = <y
. (3.10)

40

Continuum Model

This method for specifying a continuum structure function based on the lower or
upper boundary points for each state was also developed by Block and Savits [198].
As there are an uncountably infinite number of sets of boundary points which may
be required, this technique is of questionable value unless some general formula is
available which specifies all the lower or upper boundary points as a function of k.°
The following expression should replace both (3.5) for lower boundary point cal-

culations and (3.8) for upper boundary point calculations:
1
o) = [oty dr (3.11)
0

Binary Model

The “General Multistate Model” expressions given above are equally valid for the
binary case. The following simplified expressions, however, are often used in the

binary model literature.

Lower Boundary Points
Any binary coherent system can be represented as a parallel arrangement of series

structures containing its minimal path sets:

X) = max min z; 3.12
$(x) = maxminz (3.12)

Upper Boundary Points
Any binary coherent system can be represented as a series arrangement of parallel

structures containing its minimal cut sets:

o(x) = min max x; (3.13)

Jj=1 ieK;

5This begs the question of why this conceptually complicated expression would be available if a
direct expression for the structure function were not available.

Chapter 4

INTERPOLATION-BASED STRUCTURE FUNCTION
CONSTRUCTION

4.1 Introduction

In discrete cases, the use of boundary points can save the customer significant amounts
of time over specifying the system value for every component state vector [142]. The
techniques by which one may unambiguously specify the structure function for co-
herent binary and multistate models based on upper or lower boundary points are
well-understood, and the techniques by which one may compute system probabili-
ties based on component probabilities through this structure function are also well-
understood [214].

Similarly, work in continuum reliability models so far has either assumed the
structure function to be given by formula or specified through boundary points.'
However, as there are an infinite number of system states in the continuum case, and
boundary points may have to be specified for each, it is unclear how this technique
may be depended upon to reduce the effort necessary to specify the system structure
function.

Using scattered data interpolation to a finite customer-supplied data set is pro-
posed as an alternative. In addition to often producing a reasonable approximation
to the true structure function based on only a limited amount of data, this approach

allows the input data to be specified by the customer in a very natural way, and also

'In nine of the primary research papers which discuss the continuum model [195, 198, 196, 197,
212, 202, 205, 208, 210], seven also detail the use of boundary points to specify the structure
function; see Section 3.3 for further discussion of boundary points.

42

allows for more data to be added as it becomes available without altering the basic
structure of the model.? It is true that by interpolating a continuum model to a dis-
crete data set one is only approximating the points at which there is no data; however,
the alternative (discretizing the model) is itself an approximation, and depending on

how it is performed can often be guaranteed to be a poorer one.

4.2 Scattered Data Interpolation

4.2.1 General Terminology

The basic problem of scattered data interpolation [230] may be stated as follows.
Given N data points

{Xj,¢(Xj)}€SXQ, J=12,...,N (41)
find a function s(x), ¥x € S such that:
s(xj) =o(x;), j=12,...,N (4.2)

One of the first multivariate scattered data interpolation techniques was developed
in 1968 by Shepard [235]. Surveys of later techniques may be found in [229]. Although
much of the scattered data interpolation literature focuses on the cases of n = 2 and
n = 3, for our purposes we will often have n > 3; see [224] for an examination of
issues specific to this situation.

As is discussed in [230], for various theoretical reasons the problem of scattered
data interpolation in n > 1 dimensions is inherently more difficult than univariate
(n = 1) scattered data interpolation. In fact (unlike the univariate case), none of
the multivariate scattered data interpolation techniques developed before 1987 could

guarantee preservation of monotonicity, even for the relatively simple n = 2 case [237].

2which would be the case if a discrete approximation were used

43

4.2.2 Hardy’s Multiquadric Method

The method we will utilize in this chapter is a type of “radial basis function” developed
in 1971 by Hardy [231]. In a 1993 survey of methods [233], it outperformed?® all
the other methods examined (volume splines, modified quadratic Shepard, volume
minimum norm network, and local volume splines) for four out of six test functions.

For Hardy’s method, the interpolated function s(x) is given by

N
sx) = 3o e/ + =il (4.3

2

where o is a constant, and the coefficients ¢; are solutions of the following system of

linear equations:

a;; Qa2 ... QIN &1 ¢(X1)
a1 Q22 ... Q2N G| ¢(X2) (4 4)
anyi anN2 ... QNN CN Cb(XN)

where

i = (\/a2+ Hxi—xjHZ) i,j€1,2,...,N

Solving the linear system of equations (4.4) to find the ¢; values insures that
interpolation, rather than approximation, is being performed. Michelli [232] proved
that this system of linear equations is non-singular if there are no repeated points.
The fact that this linear system of equations is dense [233] may limit single-precision
numerical implementations to cases where N < 300, though techniques in [228] will
allow this method to be extended to data sets of any size.

Hardy’s method has no inherent limits on the number of dimensions (and hence
number of components) for which it may interpolate. Other major advantages [229]

include computational simplicity, speed, and continuity in all derivatives for o > 0.

3based on the size of the RMS error (see equation (4.6)) it produced for various real-world data
sets

44

4.2.83 Effect of o

The parameter o? (referred to as R? in the scattered data interpolation literature)
may be arbitrarily set. Typical values for o? are in the range (0, 1/2]. Although there
is no systematic way to set it to an optimal value, work has been done [226, 236] that
provides general guidelines.

In general, increasing the o parameter has the effect of “smoothing” the inter-
polation that will be created, and decreasing it will cause “sharper” turns near the
data points. When o? = 0, the interpolation loses the continuity of its derivatives;
in the one dimensional case this results in a piecewise linear interpolation. Examples
of this behavior are illustrated in Figures 4.1, 4.2, and 4.3, where Hardy’s method is

used on the simple n = 1 data set given in Table 4.1.

Table 4.1: Data Set for a2 Ilustration

X ¢(x)
0) |0
(1/2) | 0
1 1

4.2.4 Shepard’s Method

For the sake of comparison, Shepard’s method [235] is presented below and illustrated
in Figure 4.4. For our purposes, the problem with this interpolation method is that it
often creates local extrema at the given data points.* In the case of structure functions
for reliability, which we ordinarily expect to be monotonic, this is inappropriate. It

is one of the first techniques developed (first published in 1968), and many variations

“though it is continuous only in its first derivative

45

0.8+

0.6

0.4+

0.2+

0.2 0.4 0.6 0.8 1

Figure 4.1: Interpolation with a? =0

S(X)

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 4.2: Interpolation with a2 = 1/1000

are available. This method does have the desirable property that the interpolated
value will lie between the minimum and maximum values of the data set.

N _o(xi)
27,:1 ||X—X1'||2
N 1
2 i llx—xl|*

s(x) = Vx # %, Vie {1,2,...,N} (4.5)

s(x) =o(x;) Vx=x; Vie{l,2,...,N}

46

0.8

0.6 -

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 4.3: Interpolation with o? =1

Figure 4.4: Shepard’s Method Interpolation

4.2.5 Discussion

Note that if we assume the structure function we wish to approximate is coherent, we
may add the extreme data points (0,0) and (M, M) to the given data set, if they are

not already present.

Research done for this chapter suggests that a? ~ 1/6 may be reasonable for

47

continuum systems with two to four components, and higher values may be appro-
priate for continuum systems with greater numbers of components. In general usage,
smaller values are considered when one suspects there is local variation in the under-
lying structure function.

Although all the interpolation methods used in this chapter may be applied to
systems with any number of components, we start by illustrating their use for n = 2
so that the resulting s(x) functions may be visualized. All calculations in this chapter

were done on a computer with a machine round-off unit of 2.22045 x 1016,

4.3 Examples

4.3.1 FEzample 1

We assume a continuum system with Q = Q; = [0,1], n = 2, and an unknown
structure function ¢(x). Five points from this structure function are given to us by

the customer in Table 4.2.

Table 4.2: Example 1 Data

Component States | System State
a1) ¢

0 0 0

0 1/2 1/2
1/2 0 1/2
1/2 1/2 3/4

1 1 1

Solving the linear system (4.4) to find the ¢; values yields the results given in

Table 4.3. The interpolation based on these results is illustrated in Figure 4.5.

48

Table 4.3: ¢; Values for Example 1, o? = 1/6

Cq Cy C3 Cy Cy

2.034 | -0.801 | -0.801 | -0.241 | 0.273

Figure 4.5: Example 1 Interpolation, N =5

4.3.2 FExample 2

Let us now consider a case where the underlying structure is ¢(x) = max{z;, 22} as
shown in Figure 4.6.

In this case, the customer specifies N = 18 data points to define this structure
function. For the sake of this example, all but the first two state vectors {(0,0),0}
and {(1,1),1} were randomly generated in [0, 1]2. Based on these data points s(x)
may be computed using Hardy’s multiquadric method; this interpolation is illustrated
in Figure 4.7, where dots identify the given data points.

Following the work in [233], the accuracy of this interpolation is assessed by exam-
ining the RMS deviation of our interpolated function from the underlying function,

over a regular grid of N; x N; distinct points in the component state space (4.6).

49

Figure 4.6: Example 2 Underlying Structure Function

Figure 4.7: Example 2 Interpolation, N = 18

Throughout the remainder of this chapter, we will assume N; = N; = 10 for the
purposes of RMS calculations.
2
Nj—1 i— i j i j
=0 Zz‘]\io ' [S (NJ,-W—ll ; 131?4—21) —¢ (NJ,-W—ll’ szjw—Ql)]
N;N;
For the multiquadric interpolation illustrated in Figure 4.7, RMS = 0.02400. This

RMS = (4.6)

RMS error may be compared to the RMS error of 0.10636 obtained by using Shepard’s

50

method [235] on the same data. Thus, for this example, the choice of interpolation
method can play a large role in the estimated accuracy of the resulting interpolation.

We may also calculate E[¢(X)]. Following an identical example in [195], we will
assume that z; and 5 are uniformly distributed on the interval [0, 1], and that they
are mutually independent. Given this information, we may (using basic theorems

from probability) calculate:

/ / .CEl, xg .CEl, xg dxldxg / / .CEl, xg dxldl'g (47)

For this problem, E[¢(X)] = 2/3 and F[s(X)] = 0.66521. This represents a
0.218% deviation from the true value. For this problem the value of a? that minimizes
the RMS error is 0.22, which produces RMS = 0.02390. Thus, the heuristic selection
of a? produced a good approximation to the optimal value. We may also examine
how this interpolation improves as more data is obtained; by adding 18 more data

points, randomly distributed in S, our error is reduced to RMS = 0.01539.

4.3.8 Ezample 8

In this example we compare three systems A, B, and C. Each of these three systems
has the same set of four components, but different structure functions. For the sake
of this example, we will assume that the four components in each system have known

PDFs for their states, soft-truncated (see Appendix H) to lie in [0, 1]:

Xj ~ st-Weibull(3/2,2)
Xy ~ st-Weibull(3,4)
X3 ~ st-Beta(25/16,1)
X4 ~ st-Normal(3/4,1/5)
The components are assumed to be statistically independent. Our metric for

reliability shall be the expected system state, and the structure function for each

system is treated as unknown.

51

The customer specifies 20 data points in the component state space for each sys-
tem. For the purposes of this example, all but the first two data points {(0,0,0,0),0}
and {(1,1,1,1),1} for each system are selected randomly from [0, 1]* (data sets avail-
able on the disk accompanying this dissertation, or in Appendix I). Using scattered-
data interpolation (a? = 1/6), we estimate the expected state of each system. Based
on these results, if we were using the expected state of the system as our reliability

measure we would recommend system A over system B, and system B over system C:

Sys. A: F[s(X)] = 0.624 Sys. B: F[s(X)] = 0.545 Sys. C: E[s(X)] = 0.444

Although this was not known before analysis was performed, the ¢(x) values for

the three systems were generated from known deterministic expressions:

Sys. A 6(x) = (a1 + 1)/ I(2) + (e = 1)/ (e — 1)+ + y/T)/4
Sys. B o(x) = (7" + a3 + af + 2% /4
Sys. C: ¢(x) = 3;%/33;‘21/396;)/4%11/5

We may therefore calculate the “exact” reliabilities:

Sys. A: F[¢p(X)] = 0.620 Sys. B: E[¢(X)] = 0.542 Sys. C: E[p(X)] = 0.445

Thus, the recommendation to the customer based on the approximation was the
same as if we would have had access to the true structure functions. This test was run
with a variety of different data sets of sizes varying from 10 to 200. In no case were
results returned which would have caused the wrong recommendation to be made.
Furthermore, in 336 tests of these and other four-component structure functions, in
no case was an error of more than 5% made in the estimate of E[¢(X)] when 30 data

points or more were provided.

52

4.4 Insuring Monotonicity

4.4.1 Introduction

As was previously mentioned, insuring monotonicity is not a straightforward matter
when utilizing multivariate scattered-data interpolation. However, monotonicity is
a common requirement for a reliability model to be termed “coherent” [214]. It is
important to note that meaningful analysis may still be performed on a reliability
model, as was done in the previous two examples, without the assumption of coher-
ence. If the coherence assumption may not be relaxed, the methods presented in this
section will allow a coherent system to be generated from a coherent data set at a

significant increase in computational effort.

4.4.2 Procedure and Application

If the extreme data points {0,0} and {M, M} are elements of the customer-supplied
data set, then clearly the “proper extrema” property will be satisfied. The “mono-
tonicity” property will be retained, for a monotonic data set, by utilizing an ap-
proach we will present in this section. The “component relevance” property can then
be verified by inspection, which will complete the verification of coherence for our
interpolated model.

Since the only difficult part of this definition to establish is monotonicity, the re-
mainder of this section shall be devoted to describing an interpolation scheme that
preserves the monotonicity of the input data set. Our monotonicity-preserving inter-

polation scheme proceeds in two steps:

1. Construct an n-dimensional grid (containing up to N distinct intersection
points) in the component state space such that each of the N known data points
lies on an intersection point of the grid; use Hardy’s multiquadric interpolation

to compute values for each intersection point (other than those coinciding with

53

one of the N known data points), checking and possibly adjusting each one so

that monotonicity is retained against all known or calculated grid points.

2. Use “multilinear interpolation” on this completed grid to compute s(x) values

for all points x € S.

We should first add the data points {0,0} and {M, M} to the customer-supplied
data set if they are not already present, and should also add to the customer-supplied
data set any grid points that must have structure function values of 0 or M due to

the monotonicity of the input data set.

Step 1

The aforementioned n-dimensional grid for the data set used in Example 2 is illus-
trated in Figure 4.8 (the large dots identify the customer-supplied data points). When
the estimate s(x) is calculated for each unknown point via Hardy’s method, that es-
timate is checked against all given or previously-calculated points to insure that the
monotonicity requirement is not violated; if it is, then the estimate for that point is
taken to be the value closest to the original estimate which will not violate mono-
tonicity, considering all the points it was originally checked against. Because the value
assigned to each point is a function of all previously-calculated points the order of
calculation can be significant, and we adopt the heuristic of calculating the unknown
grid points in order of increasing distance from the centroid (M;/2, Ms/2, ..., M, /2)

of the component state space.

Step 2

Once feasible estimates are available for each grid point, multilinear interpolation
is used to determine structure function values at all other points in the continuous

component state space. Multilinear interpolation (as recommended and illustrated

o4

Figure 4.8: Monotonicity-Preserving Interpolation Grid for Example 2

in [277]) operates on a regular grid of known values, such as that which we now have,
and preserves monotonicity [277]. The multilinear interpolation scheme is illustrated

here for n = 2. Higher dimensions follow analogously.

(Xlo’le) (Xll’le)

® (x.x,)

(X1,,x2,) (X1,,x2,)

Figure 4.9: Gridded Multilinear Interpolation, n = 2

Assuming that z1y < z1y, that 22y < 22y, and that ¢[(z1, 22¢)], ¢[(x11,220)],

o[(x1p, 221)], and ¢[(z1y, 221)] are given (see Figure 4.9), we calculate sy [(x1, z2)]

55

using multilinear interpolation as follows:

supl(z1, 22)] =¢[(z1o, 220)](1 — p1)(1 = p2) + Sl(x 11, 220)|pr (1 —p2) + (4.8)

Pl(z1o, 121)](1 — p1)p2 + O[(x1y, 221) 12

where

. l’l—ililo . 1'2—11I20
= CI?11 — %10’ Pz = CI?21 — %20

In Figure 4.10, the completed coherent interpolated structure function for the Ex-
ample 2 data is illustrated. In this case, as there were no serious violations of mono-
tonicity in the original interpolation, the “guaranteed-monotonicity” interpolation

created with this procedure is almost indistinguishable that illustrated in Figure 4.7.

Figure 4.10: Non-Decreasing Interpolation, N =18, a? = 1/6

4.4.8 Coherence-Preserving Interpolation Steps

The complete procedure described in the previous section may be summarized as

follows:

56

1. Add extrema {0,0} and {M, M} to the customer-supplied data if they are not

already present.

2. Compute grid point calculation sequence by increasing Euclidean distance from
(My/2, My/2, ..., M,/2) (see Figure 4.11 for a sample n = 2 grid point calcula-

tion sequence).

3. Specify s(x) = 0 for all grid points x such that x < yg, where s(yg) = 0. Specify
s(x) = M for all grid points x such that y,; < x, where s(yy) = M.

4. Calculate the multiquadric approximation to the next grid point specified in
step 2, if it is not one of the customer-supplied data points. Use all customer-

supplied data points in this calculation. Call this approximation s,,(y,).

5. Let (X1, Xma2, - - -, Xms) be the set of all given and calculated points such that
Vp < Xy Calculate vy, = min{s(X;u1), $(Xm2), - -, $(Xms) }- Let (Xg1,Xg2, - -+, Xgr)
be the set of all given and calculated points such that x,; < y,. Calculate
vy = max{s(xXg), s(Xg2), ..., 5(Xgr) - vy < 50(¥p) < Uy, then s(y,) = sm(¥p)-

If $,(¥p) > Um, then s(y,) = vy If 5,,(yp) < vy, then s(y,) = v,.
6. Go to step 4, unless all grid points have been calculated.

7. Apply multilinear interpolation to all given and calculated points.

4.4.4 Discussion

Performing the two-stage interpolation procedure illustrated in Figure 4.10 was com-
putationally intensive, and for many types of analysis would not be necessary. It
should be pointed out, however, that if one’s interpolated structure function pre-

serves monotonicity from the original data set, that firm bounds may be calculated

o7

Qder of Galculation
H 28 20 22 30 36

19 21 29 35 x1

Figure 4.11: Monotonicity-Preserving Grid Point Calculation Order

on one’s approximation to the expected state of the system. This may be done by
defining a structure function S, (x) which, for every x, assumes the minimum pos-
sible value which would not violate monotonicity against the customer-supplied data
set. Ome would similarly construct sp.(x), and could then be assured that what-
ever monotonicity-preserving interpolation scheme one uses to calculate s(x), that
Elsmin(X)] < E[s(X)] < E[smax(X)]. See Chapter 5 for more information on this
topic.

Although for the models considered in this chapter the assumption of coherence
was never required to assess reliability and make engineering decisions, the creation
of faster algorithms which perform scattered-data interpolations for reliability models

while preserving monotonicity would be a fruitful area for further research.

Chapter 5

STRUCTURE FUNCTION PARTIAL-INFORMATION
BOUNDS

5.1 Introduction

“Coherent” structure functions (whether binary, multistate, or continuum) are by
definition monotonic, in the sense that an increase in a component’s state may not
result in a decrease of the system’s state. The purpose of this chapter is to illustrate

how bounds may be formed for the expected state of coherent systems defined by a

7 2

finite set of customer-supplied data points. Special “Syin(X)” and “spmay(x)” structure
functions are used to compute these bounds, given the distributions for the states of
the components.

The special structure function s.,;,(x), which returns what at all points in S is
the smallest possible system state allowed by the customer-supplied data and the
assumption of monotonicity, is computed as the maximum of the given structure
function values over all given data points y such that y < x.

The special structure function smax(x), which returns what at all points in S is
the greatest possible system state allowed by the customer-supplied data and the
assumption of monotonicity, is computed as the minimum of the given structure
function values over all given data points y such that y > x.

Using Equation (3.1) one may compute {E[Smin(X)], F[Smax(X)]}, which will be
lower and upper bounds on the expected state of the system.

See Figure 5.1 for a sample n = 2 case with one non-extreme data point, and

see Figures 5.2 and 5.3 for illustrations of the regions in which the structure function

59

values would be restricted due to monotonicity, based on a known central point.

"Maximum®” "Minimum"
1@ 1@
o(x)=1 o(x)=1 ®(x)=0 P(x)=1/2
% 1/2 %2 1/2
® ®
o(x)=1/2 o(x)=1 @(x)=0 @x)=0
0 0
o ®
X Xl

Figure 5.1: Tllustration of $pq5(X) and sy (x) Structures

X2

2-Qonponent | nc/ Dec Regi ons

x1

0.2 0.4 0.6 0.8 1

Figure 5.2: Increasing/Decreasing Regions, n = 2

60

3-Gnponent | nc/ Dec Regi ons
1

1

Figure 5.3: Increasing/Decreasing Regions, n = 3

5.2 Continuum Structure Function Bounds

5.2.1 FExample 1

See Table 5.1 for the input data set used in this example. The s, (X) and Sy (X)
structure functions created from it are given in Figures 5.4 and 5.5.

Considering x; and x5 to be independently and uniformly distributed on [0, 1], we
calculate the expected system state bounds (over the set of all monotonic structure
functions which this data might be drawn from) to be {0.4375,0.9375}. It should
come as no surprise that these bounds are so wide, given how little input data was
available to us.

Now, constructing the Multiquadric interpolation to this set of data (using o? =

1/6), we compute the structure function illustrated in Figure 5.6, which if the original

61

Table 5.1: Example 1 Customer-Supplied Data

) | ¢(z1, 22)

) 0

) 1/2
(1/2,0) 1/2

)

)

3/4
1

Figure 5.4: Example 1 $,,4,(x) Structure Function

system may be assumed to be continuum and coherent, and if the resulting interpola-
tion is non-decreasing (which it clearly is), must be a better approximation to the real
structure function than either of the extreme structure functions sy, (X) or Spyax(X).
The expected state of the structure function illustrated in Figure 5.6 is 0.71351, which

clearly lies between the bounds calculated for this measure.

62

smn (x) O.

Figure 5.5: Example 1 s,,,:,(x) Structure Function

Figure 5.6: Example 1 Interpolated Structure Function

5.2.2 FExample 2

Now we consider a case where we compute bounds and interpolation-based esti-
mates for data sets of various sizes drawn from a known structure function: ¢(x) =
max{z, 2} (see Figure 5.7).

Each data set includes the extreme values ¢(0,0) = 0 and ¢(1,1) = 1. All com-

63

Figure 5.7: Example 2 Underlying Structure Function

ponent vectors points other than these (see Table 5.2) were chosen randomly from

[0, 1]2.

Table 5.2: Example 2 Data Set Sizes

Data Set | Size
test2 18
test2b 36
test2c o4
test2d 72
test2e 90
test2f 108

Each component has an (independent) distribution for its state given by a Weibull
distribution s-truncated to lie within [0, 1]; the first component’s Weibull distribution
has parameters (3/2,2), the second has parameters (3,4). We now proceed to calcu-

lating structure function estimates and bounds, and expected system state estimates

64

and bounds, given these data sets and the component distributions. For the sake of
comparison, we start by computing the true expected system state (using full knowl-
edge of the underlying structure function): E[¢p(X)] = 0.810897.

We now consider expected system state bounds and estimates for this example,
obtained using data sets of various sizes. Notice (see Table 5.3) how the bounds
tighten as more data is added. Further insight may be gained from examining Fig-
ures 5.8-5.25, where it is apparent how all the computed structure functions approach

the true structure function as more data is added.

Table 5.3: Example 2 Expected System States

Data Set Bounds | Estimate
test2 | {0.704411,0.927995} | 0.812209
test2b | {0.725887,0.866069} | 0.791326
test2¢ | {0.753227,0.851401} | 0.812723
test2d | {0.776228,0.846707} | 0.811123
test2e | {0.782112,0.844489} | 0.816339
test2f | {0.783856,0.840450} | 0.815713

5.3 Example 2 Figures

Figure 5.8: Interpolation for “test2”

Figure 5.9:

Smaz(X) Structure Function for “test2”

65

66

Figure 5.10: S;in(x) Structure Function for “test2”

Figure 5.11: Interpolation for “test2b”

Figure 5.12: $pqa.(x) Structure Function for “test2b”

0.8

smn (x) 0.6

Figure 5.13: s, (x) Structure Function for “test2b”

67

68

Figure 5.14: Interpolation for “test2c”

Figure 5.15: $pqz(x) Structure Function for “test2¢”

Figure 5.16: Sy, (x) Structure Function for “test2c”

Figure 5.17: Interpolation for “test2d”

69

70

Figure 5.18: $pnqz(Xx) Structure Function for “test2d”

smn (x)

Figure 5.19: spmin(x) Structure Function for “test2d”

Figure 5.20: Interpolation for “test2e”

Figure 5.21: 8;,45(X) Structure Function for “test2e”

71

72

Figure 5.22: 8, (x) Structure Function for “test2e”

Figure 5.23: Interpolation for “test2f”

Figure 5.24: $pq.(X) Structure Function for “test2f”

0.8

smn (x) 0.6

Figure 5.25: smin(x) Structure Function for “test2f”

73

74

5.4 Discrete Structure Function Bounds

We define a new coherent structure function, “Example 3,” in Table 5.4 (the compo-

nent state probabilities are given in Table 5.6).

Table 5.4: Example 3 Full Structure Function

=
BN
)
2
N
)

— = = o o o o o o

e N N N N N N N e N

e e e e e e e e T e e T
DO —_ =) (@) H~ w o = o) (@) —~ w [\] — =)
w w) [N} [N} [N} [N})] — — —_ —_) o

—~ — N ~ — ~~ ~— ~ o N ~— ~~ —~ ~/ N
(@) H—~ w0 [\) —_ o (AR w [N —_ o) o2 —~ w0
A~ R R R R R L W W W W W N NN

S~— ~— S~— S~— ~— ~— S~— S~— ~— S~— S~— ~— ~— S~— S~—
(@] (@] —~ —~ w) (@] —~ =~ —~ w) w w w

Now, let us assume that we have access only to a subset of this table, so that the
structure function values are known only for certain component vectors (see Table 5.5).
Using Tables 5.4 and 5.6, the “true” expected system state is computed to be
2.295. If rather than Table 5.4 we would have had access only to the partial set

given in Table 5.5, we could have computed upper and lower bounds on the expected

Table 5.5: Example 3 Customer-Supplied Data

»

—~ ~~ ~— —~ — ~~ —~ — N ~~
o o w = oot ey o

B R W W o w o~ o o
N~— S~— S~— N~— N~— S~— N~— N~— S~— S~—

Table 5.6: Example 3 Component Probabilities

BSN
a3

[B R e e GV VI =)

j | PIXi=J] PlXs=Jl
0] 0.10 0.20
10.20 0.20
2 | 0.30 0.30
3| 0.20 0.10
410.15 0.20
5] 0.05 0.00

1)

system state (in a manner consistent with the earlier sections of this chapter) as:

{1.475,2.690}.

76

phi [x]

Figure 5.26: Example 3 Full Structure Function

phi [x]

Figure 5.27: Example 3 s,,:,(x) Bound

Figure 5.28: Example 3 s,,4,(x) Bound

7

Chapter 6

MARKOV MODELING FOR MULTISTATE MODELS

6.1 Introduction

Frequently, an important step in multistate modeling is to compute the probabilities
of the system (or its components) being in any one of its possible states.! As the state
of a multistate system or component is a stochastic process with time as a continuous
index set t € [0,00), and as the state space for this stochastic process is a discrete,
finite set, it may be reasonable to model with a continuous time, discrete state Markov
chain if one can assume the Markov property holds (a stochastic process exhibiting
the Markov property has the characteristic that “the probability of any particular
future behavior of the process, when its current state is known exactly, is not altered

by additional knowledge concerning its past behavior” [267]).

This chapter presents expressions for the time-dynamic state probabilities, as
functions of the number of states and their (stationary) transition rates, for sev-
eral common classes of continuous time, discrete state Markov chains that have value
in multistate reliability modeling.? For information on solving more general classes
of Markov chains see Karlin and Taylor [267]; these general solutions are incorpo-
rated into the software which accompanies this dissertation. For other work which

treats the multistate reliability model as a Markov chain, see Yang and Xue [194] or

LOf course, if the system is comprised of components with known or calculable distributions,
one would calculate the system’s distribution from its components’ distributions and structure
function rather than modeling the system distribution separately.

2Please see Appendix F for a summary of distribution classification and closure schemes which
have been proposed in the reliability literature.

79

Mohamed [132].

For notational convenience, and without loss of generality, the ordinal numbers
for the multistate reliability model system states (2 = {0,1,2,..., M} rather than
Q = {¢o, P1,...,0m}) are frequently used in the discussion to follow. Additionally,
although Markov modeling is equally applicable to both components and systems,

the notation used will be for systems rather than components.

The systems which will be considered in this chapter are non-repairable, begin in
their maximal states M at ¢t = 0, and have exponential sojourn times in each state.
We define P;;(h) as the probability that a system currently in state ¢ will be in state
j at a time h time units in the future, and define P,(t) as the probability that the

system will be in state n at time t.

6.2 Transitions to Adjacent States Only

In this section we consider the case where the system may not skip states as it degrades
(see Figure 6.1). It begins in state M and remains in each state i (i # 0) for a length of
time determined by an exponential distribution with finite parameter p;. Immediately
after its sojourn in each state 7, the system moves to state i — 1 (the average time the
system will spend in each state ¢ is thus 1/p;). The lowest state, i = 0, is the only

absorbing state. Therefore, we have the following constraints

Py (0) =1 (6.1a)

(6.1D)

and may write the Markov transition matrix as follows:

0 w0 0 |

0 —p g 0

0 0 —pu 0 (6.2)
' o

0 0 0o --- ~Hu |

We assume that Pyy1(t) = 0, as the system may not attain a state higher than
M as a decreasing process beginning in state M. Note that Py (t) = e #M' as the
system begins in state M and will remain in that initial state for a length of time

determined by an exponential distribution with parameter ;.

Figure 6.1: One-Step Transition Diagram

6.2.1 Identical Transition Rates

Let us first consider the case where p; = p; for all i # j (i,5 € {1,2,...,M}). As
the random variables for the time spent in each state are exponential, identical, and
independent, the Erlang distribution may be used to find the desired solutions. The

PDF of the time to reach state 0 may be written as

M M—1_—ut
() = ————tM et 1 >0 6.3
fWo() (M _ 1)' € - ()
Similarly, the probabilities of being in each state as a function of time may be written
as
(GO for j=M,M—1,...,1
. M—) J =) [
pli) =3 7 (6.4)

1= pljt] forj=0

81

6.2.2 Distinct Transition Rates

Let us now consider the case where p; # p; for all @ # j (4,5 € {1,2,..., M}). For

such a process we have the following infinitesimal transitions.

L= wh, j=i
lim P (h) = (6.5)
- pih, j=i—1
From ordinary continuous-time Markov chain theory, we may write the Kol-

mogorov forward equation for this system:
P,(t+h) = Po1 () i1 h + Po(t) (1 — pnh) (6.6)
One may rearrange, divide by A, and let h — 0 to obtain:
PA(t) = Put (D1 — Palt)in 6.7)

We define the following, where L is the Laplace transform operator (see Ap-

pendix G)
Li(z) = LIF(1)] (6.8)

and note that

00 —zt _ 1
LM(Z)_/O Py (1) dt = —— (6.9)

Taking the Laplace transform of the equation for P/ (t) yields (for n < M):

2Ln(2) = pp1Lpg1(2) — tnLn(2) (6.10)
which simplifies to
Lo(z) = L2 ro(2) (6.11)
Pn + 2

Applying this equation recursively, and using the expression for £;(2), we obtain:

_ MMM -1 gt

82

To be able to easily take the inverse Laplace transform so that a simple, closed-
form solution can be found, we apply the partial fractions expansion (this is the point

at which the “distinct transition rates” assumption simplifies matters):

A]\/I'n AM—] n An n
EnZ: Zq e Uy, ’ + ’ + -4+ ’ 6.13
() = i (2 Sy e) oy
One may compute the A constants by examining:
Apin Apm_1n Ann 1
Mmn | M-ln 4 AL (6.14)
pyv+ 2z paat 2 fn+ 2 (par +2) (1 +2) - (pn + 2)

Multiply both sides by uy + z (where k € {M, M —1,...,n}), and set z = —p.
This yields:

1

(ar — pe) (vr—1 — p) = (pisr —) (=1 —) ==+ (b — 1) (6.15)

Ak:,n —

Now, taking the inverse Laplace transform of the above expression for L,(z),
utilizing the fact that the inverse Laplace transform is a linear operator, and taking

advantage of the fact that

1
L {] —e (6.16)
a-+z
we obtain the final result:
forn=M
Po(t) = e ¥t (6.17)

forn=M-1,M—-2,...,0

Pn(t) = Unt1fnt2 .- - /LM(An,neiﬂnt + AnJaneiu"'Ht + -4 AM,neiﬂMt) (618)

1
Ak = (ar — i) (par—1 — i) = (et — i) (e — i) ==+ (fho — fie) (6.19)

If the utility per unit time associated with state ¢ is ¢;, we may consider the

average total utility delivered by the product over its lifetime as .-, % Also, by

83

basic theorems for expectations of sums of random variables, and from theorems for

variances of sums of independent random variables, we can calculate the mean and

variance of the time when the system first reaches state k, which we call W:

1
EWi] = > —
ikt M
Yo
VI = > —
i=k+1 Hi
Ezramples
For M =1
pl, 1] =e "
pl0,t] =1 — e
For M =2

p[2,t] = e 2

e_tMQ e_tul
plL, 8] = po (+)

M= p2 2 —

M2€_tul Mle_tMQ

pl0,t] =1+
M= p2 H2—

(6.20a)

(6.20D)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

84

For M =3

pl2.t] = ps (

eftp‘3

p[3, 1] = e 3

eftpﬁ eft/'@
)
Mo — M3 3 — W2

plLt] = paps ((

+
pa — piz) (ph2 — fi3)

e_t.u/Q

(6.26)

(6.27)

e_t/vbl

(1 — pa) (p3 — piz)

+

pl0,t] =1 —(p[3,t] + p[2,t] + p[1,1])

6.3 Transitions to Any Lower State

(2 — pa) (p3 — p1a)

) (6.28)

(6.29)

Now let us consider the case where the system may proceed from each state to any

lower state in one transition. If the current state of the system is 7, and the next

state of the system will be k, we say that the length of time the system spends in

state j before it transitions to state k is given by an exponential distribution with

parameter j;;. We define the transition rate out of each state as p; = Zf: i

(thus, the average time the system spends in a state j before transition will be 1/;).

One may readily see, based on the nature of this problem, that p;; = 0 for £ > 7 and

that pp = 0. The Markov transition matrix may be stated as follows:

0
0

Hi1,0
—H1
0

H2.0
H2.1
—H2

Har—1,0
Har—1,1

Har—1,2

—HM-1

HAr,0
Har,1

Har2

M1 ar—1

—HMm

(6.30)

6.3.1 FEzxamples

Applying the general theory [267], we compute the following examples:

For M =1
For M =2
For M =3

pllt] = (

pll,t] =e

plOf]=1—e™

p2,t] = e 2
—tpr _ —tue
pl1. 1) = F2! e <)
H2 — M
pl0,t] =1+ B2t + H20 7 H1 otz
H1 — M2 H1 — M2
p3,t] = e~
Pl 1] = —EEE (e)

Hoft3 1 — [H3pia 1 + M2,1M3,2) ot
(11— pis) (2 — pa)

+ (H2,1 43,2 > o2
(Ml - /~62)(/~63 - /~62)

(M2/~L371 — o132 + H1f431
|
(1 — pr2) (1 — pi3)

pl0,t] =1 — (p[3,t] + p[2, 1] + p[1,1])

) e tm

85

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

Chapter 7

ADDITIONAL TOPICS

7.1 'Traditional Bounds for Non-Binary Models

7.1.1 Introduction

Two issues complicate the task of bounding system expected values, as a function of

component expected values, for non-binary reliability models:

1. For multistate and continuum components, knowing F[X;(t)] does not mean

that one knows Fj[x;,t] (see Example 1).

2. Multistate and continuum coherent structures are not necessarily bounded by

parallel and series arrangements of their components (see Example 2).

Ezxample 1

Let us assume that ¢(x) = min{zy, 22}, Q; = Q = [0,1]. Let us also assume we
know that F[X;] = F[X5] = 1/2. If the actual component distributions in one case
are P[X; = 1/2] = 1, which essentially means that each of the two components
resides permanently in state 1/2, then we can calculate F[¢(X)] = 1/2. If the actual
component distributions are instead P[X; = 1] = 1/2, P[X; = 0] = 1/2, then we
can calculate F[¢(X)] = 1/4. Therefore, the expected value of the system is not
unambiguously determined by the expected value of the components and the system’s

deterministic structure function.

87

Ezxample 2

Consider the following continuum structure functions, which meet the coherence cri-

teria of both Boedigheimer [214] and Baxter [195]:

1 T =Ty =--=1Tp=1
9
pi(x) =19
W, otherwise
$2(x) 0, Ty =Ty = =T =0
2\X) =
1 — minfzies..en} G awrise

1010 9

For all absolutely continuous component distributions, E[¢;(X)] ~ 0 and F[¢y(X)] ~
1. Therefore, one cannot always construct meaningful bounds based solely on “co-

herence” for non-binary models.

7.1.2 Trivial Bounds for Direct Selection

Some coherence definitions simply assume that the structure function will be bounded
by certain functions (typically min and max), which then allows bounds to be con-
structed on any coherent system of that type based on the assumed structural ex-
tremes. Consider these five commonly-used structure functions: [T, z;, [, =i,
min;’_; x;, maxj_; Tj, T(n—k+1), and # Assume that the real system under con-
sideration has independent subsystems and components, and that each subsystem
(and any subsystems of it) is specified by one of these five structures.t Of all the pos-
sible systems which can be constructed under these assumptions, [[\, z; will have the

highest state and [];_, z; will have the lowest state, assuming that Q = ; = [0, 1];

'n not necessarily equal for each, of course.

88

the expected value of these two may thus be used to bound F[¢(X)]. In other words:

n i1 T n $
Hmiglngiglelgl?jlxxiggxi (7.1)
anZl]n T < T py1) < iZa]X T (7.2)
therefore
[T Elx: < Elo(X)] < [EIX4] (7.3)

7.1.83 Discrete Path-Cut Bounds with Partial Information
Lower Boundary Points Provided

Let us assume we are given a (possibly incomplete) set of lower boundary points for a
discrete system. If a structure function is constructed based on these lower boundary
points, a “lower bound” will result; the system state for any given component vector
will be the same or lower as that which would be obtained if the set of lower boundary
points provided were complete.? If only a lower bound is required, one could construct
the structure function based on the provided lower boundary points, and then compute
based on it any reliability measure one wishes; a measure such as E[¢(X)] constructed
for this structure function will be a lower bound.

Forming valid upper and lower bounds on the probability of being above a certain
state (without generating the structure function) is also possible for discrete models.
The bounds given below are the result of taking the best set of bounds (lower and
upper) for all “trivial bounds” given in (D.9); “forgetting” lower boundary points

causes these bounds to become wider rather than narrower — as it should be.

n

géaﬁ{ﬂ Qiyi} < Qr < ;IEIiLHk{l - H(1 — Qiy)}

i=1

2Tf a component appears only as zero in all lower boundary points, it can be concluded either
that this component is irrelevant or that some lower boundary points were omitted; if no lower
boundary points are provided for a given system state (other than the minimal state), it should be
investigated whether that system state may be removed from the model or merged with adjacent
system states.

89

A similar expression can be computed for the upper boundary points.

Both Lower and Upper Boundary Points Provided

For the sake of simplicity we begin with the binary case. The ordinary path/cut

bounds on R = @)y, based on the R; = Q; »r values, are:

S

H[l—H(I—Ri)]gRSI—H(l—HRZ-)

j=1 i€K; i€P;

Defining 3] = 1—[[;ex, (1= Ri) and of = 1 —[];cp, Ri, we note (since 0 < R; < 1
and 0 < 1—R; < 1), that 0 < ﬁj* <land0< 04;5 < 1. Rewriting the above expression
in this new notation, we have 335 --- 8 < R <1 —aja;--- o). Because 0 < ﬁ;‘ <1
and 0 < o} < 1, the lower bound may increase if a cut is omitted and the upper
bound may decrease if a path is omitted. This is obviously not acceptable behavior if
we wish for these bounds to be robust; it means that the more one forgets the tighter

the bounds become.

The basic situation is that if one forgets a minimal path when constructing ¢(x),
there will be additional vectors such that ¢(x) = 0 (where before those same vectors
would have produced ¢(x) = 1); therefore, one’s calculated ¢(x) will be the same
or lower for any given x. Similarly, ¢(x) will be the same or higher if one forgets
a minimal cut. This suggests that to have probability bounds remain valid in the
face of incomplete path/cut information, paths should be used when computing lower

bounds and cuts should be used when computing upper bounds.

This characteristic is possessed by the “min/max” bounds defined in Appendix D.
Generalizing to the multistate case, we therefore conclude that equation (D.12) should
be used to form probability bounds based on upper and lower boundary point sets

which one suspects are incomplete.

90

7.2 Discretization

This section concerns determining the proper numbers and values of component and

system states for a multistate model.

7.2.1 Customer-Interaction Approach

If the number of possible states for the component or system (in the real world, not
the model) is finite, one need only determine if the customer requires the level of
detail that would be present by explicitly including all of those states in the model.
If not, discrete physical states may be grouped together into a smaller set of model
states, according to the preferences of the customer [214].%

However, if the number of possible physical states is infinite, existing over a con-

tinuum of real numbers, one may either:

1. Utilize a continuum model.

2. Quantize these physical values so that they may be categorized into a finite

number of model states.

If quantization is desired and interaction with the customer is possible, the fol-

lowing procedure may be used:

1. Start at the lowest possible physical state.

2. Increase the physical state until the customer indicates he or she wishes a state
change for the model (i.e. that there is now a significant difference in his or her
experience of the item in question which he or she wishes captured in the model

for the purposes of effective decision-making).

3For systems or components which are very rarely in any state other than their optimal one, it
may be necessary to distinguish only between the optimal state and the first sub-optimal state.

91

3. Any physical states that fall between this model state and the last model state
are assigned to this new model state (see Figure 7.1 for a traditional multistate
model example, where y represents the physical state and Y represents the

model state).

4. If all possible physical states have been classified into a model state, stop. Oth-

erwise return to step 2.

0, —-oco<y<my

I, wm<y<wy

M, y,<y<oo

< State O » |« State 1 » <« State M »

yl y2 e o o yi e o o ym

Figure 7.1: Traditional Discretization

If there are a finite number of economic countermeasures (i.e. repairs) which the
customer may take to return the system or component to its optimal state, and if
it is possible to quantify the economic loss caused by deviations from optimal, one
could define the intermediary discrete model states as the physical states at which

the customer would enact the available countermeasures.

92

7.2.2 Optimization Approach

The task is to take a continuous random variable which assumes values in [min, max|
and discretize it so that it only takes on values in {yo, y1, ..., Ym}, and to perform this
discretization in a way that is, in some sense, “optimal.” It is assumed that yy = min

and that y,, = max, so as to retain the natural extrema of the system (see Figure 7.2).

f(y)

Y, Y, Y3 Y4 Ys

| P | PS | o l S l L 2 l
yo?<:|¢> G GG &S E— Vs

6 7

Figure 7.2: Discretization Pattern

The approach taken here will be to consider a discretization “optimal” (at least
locally) if the RMS distance between a point in the original variable and its discretized
value is minimized (at least locally). We assume knowledge of the PDF f(y) for the
original random variable. We define d(y) as the point to which each y in the original
variable will be discretized to,* and therefore write the minimization problem as

follows: Minimize

g(a]7a’27"'aam>

*With regard to Figure 7.2, it is required that ag = min, a,,,+1 = max, and a; < a; for all i < j.

93

where

lg(ar, az, ... ,an)* = El(y — d(y))*] = /“1 (y —min)*f(y) dy +

min

a2 a +as\’ s a; + ai
/ (y— 12 2) f(y)dy+---+/ (y—Tﬂ> fy)dy+---+

' am 2 max
I G R AL

subject to
min < a1 < ag < -+ < @,, < max

Please see Appendix I for illustrations of this optimization for various models.

7.3 Component and System Data Collection

When identical items are put on test to estimate their time-to-failure (in a binary
sense), the items are generally monitored constantly so as to determine the exact
failure times for each [66, 56]. Since the items are being constantly monitored, if
one can discern and record finer gradations of performance than just “perfect func-
tioning” and “complete failure” one need only record these exact performance levels
continuously during testing to allow the construction of a non-binary, time-dynamic

empirical distribution for that system or component’s state [207].

Chapter 8

CASE STUDIES AND EXAMPLES

8.1 Misleading Discretizations

The examples in this section illustrate that it is possible for discretized models (mul-
tistate or binary) to lead to sub-optimal engineering decisions when the underlying
system is inherently continuum. As many real-world systems are inherently contin-

uum, this has real-world relevance.

8.1.1 Bicycle Example
Introduction

Let us assume that the system under consideration is a bicycle. It has two tires, each
of which has a braking mechanism that slowly deteriorates as the system ages. We
wish to examine the distance the bicycle requires in order to stop (from a standard
speed) once the brakes are applied. We shall call the distance that the bicycle requires
in order to stop when the brakes are in perfect condition system state 1, and the
distance that the bicycle requires in order to stop when the brakes are in their worst
condition system state 0. A binary model will allow only these two states for the
system, a multistate model will allow a discrete set of states including 0 and 1, and a
continuum model will allow the full continuum of states in [0, 1].

We will examine three different models for this system, the aim being to illustrate
how decision errors can be made as an inherently continuum system is discretized.
Our approach will be to assume one structure function for all three of the systems;

these three systems A, B, and C will be differentiated by having different distributions

95

for the states of their components.

The customer wishes to assess the reliability of the bicycle’s brakes by examining
the expected state of the system. Higher values are, of course, better. The “true”
value for the expected state of each system will be obtained from the full continuum
model. Under the assumption that, on occasion, only partial structure-function data
is available, we will examine how our decisions would change when the following

simplifications are used:
1. Scattered-Data Interpolation Continuum Model, 18 data points
2. Multistate Model, with states {0,3/8,5/8,1} for components and the system

3. Binary Model, with states {0, 1} for components and the system

Structure Function

The following structure function (see Figure 8.1) is common to all the models consid-

ered in this bicycle example: ¢(x) = z1 2.

Figure 8.1: Bicycle System Underlying Structure Function

96

Component Distributions

Note: All of these component state distributions are s-truncated to have the domain

0,1].

System A
X1 ~ Normal(0.740818, 0.292007)
X5 ~ Normal(0.606531, 0.338651)

System B
X, ~ Triangular(min=0, max=1, mode=4/5)

Xy ~ Triangular(min=0, max=1, mode=4/5)

System C
X, ~ Beta(25/16, 1)
Xy ~ Beta(25/16, 1)

Interpolation Data

The data for the scattered-data model is presented in Table 8.1. The value of the

adjustable parameter which was used is o = 1/6.

Discretization Patterns

For the multistate model with component states {0,3/8,5/8, 1}, component values in
0, 1/4] are mapped to 0, values in (1/4, 1/2] are mapped to 3/8, values in (1/2,3/4] are
mapped to 5/8, and values in (3/4, 1] are mapped to 1. The system state is determined
by rounding the calculated value to the nearest value in the set {0,3/8,5/8,1}.

For the binary model with component states {0, 1}, component state values in

[0,1/2] are mapped to 0, and component state values in (1/2, 1] are mapped to 1.

Table 8.1: Data for Bicycle System Scattered Data Interpolation

X

$(x)

0, 0}

0

1, 1}

1

0.4921976512515784, 0.6567022718937255)

0.3232273157976671

0.4318405796090456, 0.916524025621182)

0.395792266449867

0.1817978201605658, 0.01905256469642804)

0.00346371473027877

0.0875176290939841, 0.4669830661251967)

0.0408692507743164

0.5301873141694764, 0.822623711486269)

0.4361446561650311

0.5282877576882771, 0.983386652896693)

0.5195111297993741

0.0813181165792199, 0.4985288836434664)

0.04053942987822774

0.02835256883583061

0.2926663140648067, 0.3993713978357307)

0.1168825549474928

0.2748510578765808, 0.5112077448767638)

0.1405059894740797

0.1254410738042156, 0.1499798419835248)

0.01881363242739993

0.949182608156626, 0.3951977675322207)

0.3751148477239091

0.6332434225526374, 0.4932775700897993)

0.3123647767521129

0.5173420285475804, 0.4786737419110386)

0.2476380446527176

0.4514456023920716, 0.4742250053933712)

0.2140867932291938

(
(
(
(
(
(
(
(
(
(0.05026429468732048, 0.5640697638801792)
(
(
(
(
(
(
(
(

0.4298243994535963, 0.01169067578584187)

0.005024937698856182

97

The system state is determined by rounding the calculated value to the nearest value

in the set {0, 1}.

For the sake of reference, the upper and lower boundary points for the multistate

model are given in Tables 8.2 and 8.3.

98

Table 8.2: Bicycle System Upper Boundary Points

Point Level
(0,1) 0
(1,0) 0
(3/8,3/8) | 0
(3/8, 1) 3/8
(5/8,5/8) | 3/8
(1, 3/8) 3/8
(5/8, 1) 5/8
(1,5/8) 5/8

Table 8.3: Bicycle System Lower Boundary Points

Point Level
(3/8, 5/8) | 3/8
(5/8, 3/8) | 3/8
(5/8,1) |5/8
(
(

1,5/8) |5/8
1,1) 1

Results

Results are summarized in Table 8.4. Following each expected system state value in
parentheses is the ranking this value gives that system. For example, based on the
continuum (“true”) model, we would recommend system C, followed by system A and
system B.

Note that the scattered data interpolation model gives us the same ranking as

99

Table 8.4: Bicycle System Expected System States

System A System B System C
Continuous 0.361647 (2) | 0.360000 (3) | 0.371802 (1)

Scattered-Data | 0.368992 (2) | 0.365522 (3) | 0.380515 (1)
Multistate 0.404406 (3) | 0.411163 (2) | 0.411276 (1)
Binary 0.448679 (2) | 0.472656 (1) | 0.437498 (3)

the continuum model. The multistate model gives us the same first choice, but
indicates incorrectly that system B would be our second choice rather than system
A. The binary model gives us a completely incorrect ranking, indicating that system
B is preferable to system C. This illustrates that using multistate, scattered data, or
continuum modeling can result in better answers than binary simplification in some

cases.

8.1.2 Automobile Example
Introduction

For this example, we assume that the system in question (the automobile) is inherently
continuum, and has exactly four components (its tires). The four components may
take on values in [0, 1], as may the system. The state of each component (and hence
the system) is stochastic, and is given by a PDF. Although the distributions for the
four components are not necessarily identical, they are assumed to be independent.
Our approach shall be to consider four different systems, and examine how these
four distinct systems are ranked when the full continuum model (“reality”) is used,
when a multistate model is used, and when a binary model is used. The ranking
of the systems shall be determined by decreasing order of the expected value of the

structure function for that system.

100

The Discretization Used

For the binary model, the components are discretized by considering all states in
(1/2,1] as being mapped to state 1, and all states in [0, 1/2] as being mapped to state
0. The appropriate probabilities are calculated from the PDF for each component.
System states are mapped to {0, 1} in the same fashion.

For the multistate model, the situation is identical except that for each component
the states in [0, 1/8] are mapped to state 0, the states in (1/8,3/8] are mapped to
state 1/4, the states in (3/8,5/8] are mapped to state 1/2, the states in (5/8,7/8] are

mapped to state 3/4, and the states in (7/8, 1] are mapped to state 1.

The Systems Considered

Note: All distributions are s-truncated (if necessary) so that fol filz;) dx; = 1.

System D

qb(X) = T1X9X3X4

X] N XQ, Xg, X4 ~ Beta[25/16,1]

System E

¢(x) = (In(z1 + 1)/ I(2))((e™ — 1) /(e — 1))(x3) (v/T1)
X1, Xo, X3, X4 ~ Normal[3/4,1/5]

System F

¢(x) = (In(z + 1)/ In(2))/4 + (€72 = 1)/(e = 1)) /4 + (23°) /4 + (/7) /4
Xy, X, X4 ~ Normal[1/10,1/10]

fg[.ib'g] = 2(1 — .%3)

System G

101

1/2 1/8
¢(X) = x%x;‘%/ x4/

X; ~ Weibull[3/2,2]
Xy ~ Weibull[3,4]
X3 ~ Weibull[2,5]
X, ~ Weibull[6,3]

Results

The expected state for each system and model type is given in Table 8.5. The systems

are therefore ranked (in decreasing order of preference) as given in Table 8.6.

Table 8.5: Automobile Expected State of the Systems

System D | System E | System F | System G
Continuum 0.138 0.132 0.152 0.133
Multistate 0.122 0.130 0.119 0.145
Binary 0.191 0.605 0.000 0.389

Table 8.6: Automobile System Rankings

Continuum | F, D, G, E
Multistate | G, E, D, F
Binary E, G, D, F

We therefore note that different rankings are produced depending on whether the
model is discretized or not. In reality (continuum model) system F is the best, but
the multistate approximation would instead recommend system G to the customer,

and the binary approximation would instead recommend system E to the customer.

102

8.2 Time-Dynamic Models

8.2.1 Tire Example

Let us consider a simple non-repairable system with three states: 2 = {0, 1,2} (see
Table 8.7). The system begins in its best possible state (2), where it spends a length of
time given by an exponential distribution with transition rate uo. After leaving state
2, the system spends a length of time in state 1 given by an exponential distribution
with transition rate p;. After leaving state 1 it enters state 0 (the worst possible

state) where it remains. We assume py # 11, po > 0, and pq > 0.

Table 8.7: Tire Example States

State | Tire Condition

2 Low Tread Wear

1 Moderate Tread Wear
0 High Tread Wear

System state probabilities are given as follows:

(

pl2,t] = eH2t

pll 1] =t (et — ¢ rat) (8.1)
_ w2 —u1t —uat

kp[O,t] =1+ -2 © " p—z © He

The expected value of ¢(X), the system state (as a function of t), is therefore
Q0 —
E[p(X)] = Ha N2€7#2t . H2 ot (8.2)
H1 — f2 1 — H2
Let us assume by way of example that we have the following parameters for the
tire example: s = 2, uy = 1. For this special case, we have p[2,t] = e™, p[1,t] =

207t —e7), p0,t] = 1+ e — 2¢7, and E[p(X)] = 27"

103

8.2.2 Military Example
Model Definition

This model is based upon an example originally presented by Boedigheimer and Ka-
pur [146], and considers the effectiveness of a military force (the system) which begins
battle with six attack units and five artillery units (the components). The components
x1 and xy are defined as the remaining number of units of their type: a component
state vector of (3,4) would indicate there are three remaining attack units and four
remaining artillery units. We assume it is not possible to replace units that are de-
stroyed, and that each component x; spends a length of time in each of its non-minimal
states governed by an exponential distribution with a common parameter p; (where
ie ().

We compute in (8.3) and illustrate in Figure 8.2 the dynamic probabilities of each
component being in each one of its states as a function of time:

% forj=mm-—1,...,1

- Z;n:l pilzij,t] for j=0

Our customer (the military) indicates they wish to consider six distinct levels of
performance for the entire military force: {0, 1,2,3,4,5}. It is assumed that the state
values for the system have some direct interpretation in terms of the real performance
of the system (e.g. state 2 is half as desirable as state 4). Based on their experience
with this type of force, the military indicates that the component state vectors given
in Table 8.8 are such that any decrease in the state of either component would cause
a decrease in the system state. Hence, they are the lower boundary points.

From this information, using commonly known techniques for multistate sys-
tems [144] we can determine the system state associated with any particular state
of the set of components. If the model were large enough and complicated enough

that computational time was a concern, then it might be worthwhile to decompose the

104

Table 8.8: Customer-Specified Lower Boundary Points

LBP LEVEL
(1,2) 1
(2,0) 1
(1,2) 2
(2,1) 2
(1,2) 3
(2,3) 4
(4,4) 5
(53) 5

system into a series of binary models [135] and then utilize some of the more advanced
algorithms which have recently been developed to assist in such cases [36, 52].

However, let us assume that through historical battle records or other simulations
it is found that the transition rate for the first component is p; = 1.2000, and the
transition rate associated with the second component is ps = 1.9000. With this
information, using direct enumeration based on the structure function calculated from
the lower boundary points, we may find the probabilities of the system being in any
given state as a function of time.

With this time-based information, we may calculate values for each of the reliabil-
ity measures of interest. Measures will be calculated as functions of time and specific
results will be returned for ¢ = 2, which is assumed to be of special interest to the

customer.

Performance at the Customer’s Time of Interest (t = 2)

Please refer to Table 8.9 and 8.10.

105

Figure 8.2: Dynamic System State Probabilities

Table 8.9: State Probabilities at ¢t = 2
i pli,2]
0.1876
0.4100
0.1593
0.1595
0.0690
0.0146

Tt = W NN = O

Table 8.10: Selected Reliability Measures

Elo(2)] El6(2/M Vip(2)] TOE OE[Z] OVUB[2
1.5562 0.3112 1.5303 8.4583 6.4648 6.5551

Interpretation of Measures at the Customer’s Time of Interest (t = 2)

We can conclude that the system is in a state of disrepair, as the expected state is

only 31% of maximum. It can also be instructive to examine the ratio of OE[r] and

106

TOE, which represents the expected fraction of the total benefits from the system
which the customer has already received. At t = 2, this ratio is 76%.

One may examine OVUB|7] with Chebychev’s inequality [274] to get a better sense
of the behavior of OE[7]. Of course, as OVUB]Jr] is already an upper bound for the
variance of the quantity under consideration, this bound will be quite conservative.

For example:

P[1.380 < / ") dt < 11.550] > (8.4)
0

3
4
Assessment of System Dynamic Performance

We start by examining E[¢(t)], the average state of the system as a function of time

(see Figure 8.3).

1 2 3 4

Figure 8.3: System State Expectation

We now examine the integral of the average state of the system, OE[7] (see Fig-
ure 8.4). OE[r] asymptotically approaches TOE, which is 8.4583 in this example;
TOE represents the expected total utility one will receive from the system. As this

is a non-repairable system, we would expect the average length of time (DTE[:]) the

system spends above each state' to be positive and finite (see Table 8.11).

1 2 3 4

Figure 8.4: System Output Expectation

Table 8.11: Values of DTE[4

DTE[0] DTE[l] DTE[2] DTE[3] DTE[4] DTE[5]
34036 1.8081 1.5114 1.0000 0.6452 0.0000

107

We now examine V[¢(t)], and note that it has a maximum at ¢ = 1.37. One can

easily imagine situations where the variance of the state of the system might be of

equal or greater interest to the customer than the expected state of the system.

The LWE measure was calculated for six different U(t) functions (see Figures 8.6,

8.7, 8.8, 8.9 and Table 8.12).

U(t) functions #1 and #2 may accurately model the time-varying nature of the

customer’s interest in the product in cases where the product or service is of greatest

value when it is initially purchased, but where there is a steadily decreasing positive

lother than the maximal state

108

175¢
15¢

1.25¢

0.75}
0.5

0.25¢

1 2 3 4

Figure 8.5: System State Variance

0.6
0.5}
0.4}
0.3/
0.2}

0.1

1 2 3 4 5 6

Figure 8.6: U(t) Function #1

utility for all ¢ > 0 (perhaps being especially true in the low-cost consumer electronics
industry). For our military example, this could be reflected in a situation where a
city population is being defended while it evacuates.

U(t) functions #3 and #4 reflect cases where customer interest grows to a max-
imum (at t = 3 for #3 and at t = \/m for #4) and then steadily fades. For our

military example, this general form of U(t) could be appropriate when an impor-

109

0.09

0.08

0.07

0.06+

Figure 8.8: U(t) Function #3

tant offensive is being planned at some unspecified time in the future, but when the
military force in question must fight until the time of that offensive.

The U(t) functions #1 through #4 are continuous probability density functions
(PDF’s): #1 is an Exponential PDF, #2 is an FRatio PDF, #3 is a Gamma PDF,
and #4 is a Weibull PDF. Because these U(t) functions are PDF’s (presumably for

the time-of-occurrence of some future event), the LWE measures could be interpreted

110

Figure 8.9: U(t) Function #4

Table 8.12: U(t) Definitions and LWE Values

4 U(t) LWE
1 2% 4.1944
2 9V3(3+2t)752 29228
3 (t/9)e Y3 0.62776
4 e 3.4351

as the expected state of the system at the time of this event. As one can see, and
as one would expect, U(t) functions which are large for small ¢ and small for large t

produce large (“good”) values for LWE.

8.2.83 Continuum Example

In this subsection we illustrate the use of Tables 3.1 and 3.2. Each of the two systems
in this example will use the same six components in different structural arrangements.

The six components have distributions as given in Table 8.13.

111

—(z—p)?
202 dzx.

CN denotes a cumulative normal distribution: CN(s; pu,0) = f_soo QIWe

CNT denotes a cumulative normal distribution s-truncated to lie between 0 and 1:

CNT(s;p,0) = ggg Z‘;g gggg ‘:LZ) As we wish to make these distributions functions

of time in modeling a non-repairable system, it is reasonable to assume that p will
decrease over time. We additionally assume that o will increase to a maximum when
W= % and then gradually decrease. We therefore define, for the sake of these examples,

log(2) t

ple,t) =e "< and o(c,t) = 1 (5 — |5 — ple,t)|) + 1&5. Note that the parameter ¢

is inversely proportional to the rate of decay of that component’s expected state.

Table 8.13: Continuum Example Component Distributions

1 || Distribution of X;

1 || Multistate, with p[¢;,t

3t
2

given by Table 2.2 with A = 3

2 || Binary, with p(t) =

3 || Continuum, with F[s,t] = CNT(s; u(2/3,t),0(2/3,1))
4 || Continuum, with F[s,t] = CNT(s; u(1,t),0(1,1))

5 || Continuum, with Fs,t] = CNT(s; u(1/2,t),0(1/2,1))
6 || Continuum, with F'[s,t] = CNT(s; u(3/4,t),0(3/4,1))

System A

In this example we wish to demonstrate the calculation of time-dynamic reliability
measures for a system of six components arranged in “minimum” and “maximum”
subsystems as illustrated in Fig. 8.10: ¢(X) = max(Xy, min(X;, max(Xs, X4, X5, Xg))).
Using the expressions given in section 2.2 and Table 3.1, we can compute the measures

given in Table 8.14 along with those illustrated in Fig. 8.11, Fig. 8.12, and Fig. 8.13.

112

X Xy, X)

——— MmaX —‘
min —‘

max

ONORORORORC

Figure 8.10: System A Structure Function

Als, 1]
4},

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 8.11: System A Availability (at ¢t = 1)

System B

In this example we wish to demonstrate the calculation of reliability measures at

one moment in time (¢ = 1) for a system of the same six components arranged in

PR

“average,” “product,” and “coproduct” subsystems (rows 4, 5, and 6 respectively of

Table 3.2), identified as >, [], and [in Fig. 8.14: ¢(X) =1— (1 — X¢)(1 — ((X1 +

113

0.5 1 15 2 2.5 3

Figure 8.12: System A State Expectation

0.15}

0.125}
0.1}
0.075¢
0.05}
0.025}

0.5 1 15 2 2.5 3

Figure 8.13: System A State Variance

Xo+ X3)/3) X, X5).

Using Table 3.2, we may compute F[¢(1)] = 0.417 and E[¢?(1)] = 0.185 for
this system with component distributions as given in Table 8.13. This allows us to
compute V[p(1)] = E[¢*(1)] — E[¢(1)]* = 0.011. By computing these values for other
values of t, any of the measures discussed in this dissertation which are functions of

E[o(t)] and E[¢?(t)] may also be computed.

114

Table 8.14: System A Measures

Measure Value

OE[3] 0.918
OVUB[3] | 0.874
TOE 0.926

DTE[0] | 1.198
DTV[0] | 0.426
B[0,0.05] || 0.389
T[0.95] || 1.890

X X0, X)

H—

—
’—I'I

ONCONC

Figure 8.14: System B Structure Function

8.3 Large Static System

This mixed system is composed of “parallel” (¢(x) = maxx) and “series” (¢p(x) =

min X) subsystems. The reliability block diagram is given in Figure 8.15, and the

115

distributions for each component are given in Table 8.15.2

7l
11
51 Ty 51
9 10 12 13 16
14
15
115
16 J
17
1 =1 =
L4 15|
L7
3
13|
91
19
!
18
%o
20

Figure 8.15: “Large Static System” System Diagram

“Binary” is a discrete distribution whose probability mass function is

(

P, =1
PX=zal=q1-p, 2=0 (8.5)
0, otherwise
\

“UniformMixed” is a mixed continuous/discrete distribution whose CDF is

/

0, x <0

Flz] = 41, x> 1 (8.6)

p0+ z(1 — p0 — pl), otherwise
\

2The definitions for these distributions are given in Appendix H (all continuous distributions are
h-truncated) and in Equations 8.5 and 8.6.

116

Table 8.15: “Large Static System” Component Distributions

Component | Distribution

1 Binary, p=0.5

2 UniformMixed, p0=0.2, p1=0.3
3 Chi(1)

4 Binary, p=0.432

5 Binary, p=0.643

6 UniformMixed, p0=0.05, p1=0.48
7 Normal(0.52, 0.2)

8 Beta(0.7, 0.31)

9 Cauchy(0.3, 2)

10 ChiSquare(1)

11 Exponential(2)

12 ExtremeValue(0.6,3)
13 FRatio(5,7)

14 Gamma(0.8, 0.3)

15 Laplace(0.2, 0.238)
16 LogNormal(0.2,1)
17 Logistic(0.222, 0.6)
18 Rayleigh(1)

19 StudentT(4)

20 Weibull(0.4, 0.9)

Using Table 3.1, the CDF of the system state may be computed as shown in
Figure 8.16 and the expected value of the system state is E[p(x)] = 0.61.

117

0.2 0.4 0.6 0.8 1

Figure 8.16: Large Static System CDF

8.4 Aviation Communications

This example consists of a multistate reliability model which was proposed and used
during the author’s research appointment at AT&T Wireless Communications during
1995. Data has been slightly altered to protect confidentiality.

An airplane’s air-to-ground telephony system has two communications channels.
When both channels are open and functioning properly, the channel to be used when
an outgoing call is placed is selected randomly by the telephony software. Therefore,
when the system is operating perfectly the two channels should be chosen in approx-
imately equal proportion (available data confirmed this was true to within 0.1%).
Deviations from this (over and above what would be expected by chance, based on
the geometric distribution) indicate that one channel is not functioning and hence
not accepting calls; this is a highly undesirable situation, as it requires customers to
wait longer for an open channel and increases the probability that some may balk
from the queue. Therefore, the system’s best state occurs when approximately 50%
of the calls are being made on Channel 1. To enhance understanding of this system a

discrete time Markov chain, where state changes are said to occur every 30 calls, was

118

created.

Note that this analysis cannot detect situations where both channels are failing.
From the call records, this is indistinguishable from the plane simply not flying that
day, and hence not allowing any calls. It was also the opinion of the engineers re-
sponsible for this system that situations where both channels fail simultaneously are
quite rare and could safely be ignored.

The states for this system are enumerated in Table 8.16. Note that each of the
two channels is in either poor (0), moderate (1), or good (2) condition. As was
indicated earlier, this model (and the data it is based on) cannot detect uniform
changes in the functionality of both channels simultaneously, so states (1,1) and (0,0)
are essentially conflated with (2,2). Also, (0,1) is conflated with (1,2) and (1,0) is
conflated with (2,1). However, if the engineers are correct in assuming that both
channels very rarely degrade simultaneously, then we may consider these states as
providing separate information on independent components (see Figure 8.17). As
each component (channel) may be in more than two states, this is a two-component

multistate reliability model.

Table 8.16: Aviation Communications State Definitions

SYSTEM STATE DESCRIPTION CH1 CH2
0 0%-20% of calls on CH1 0 2
1 80%-100% of calls on CH1 2 0
2 20%-40% of calls on CH1 1 2
3 60%-80% of calls on CHI ~ 2 1
4 40%-60% of calls on CH1 2 2

As Table 8.17 reveals, when the system is either in one of its two poorest states

(0 or 1) or else in its best state (4), it is likely to stay there; if it is between these two

02

—>

(Y

119

Figure 8.17: Aviation Communications Markov Chain

Table 8.17: Aviation Communications Transition Probabilities

States | 0 1 2 3 4

0 0.35 0.00 0.20 0.05 0.40
1 0.00 0.50 0.05 0.20 0.25
2 0.00 0.00 0.10 0.15 0.75
3 0.00 0.00 0.10 0.15 0.75
4 0.00 0.00 0.10 0.15 0.75

extremes (2 or 3), it is likely to improve in the next time step.®> The system tends to

improve to perfect functionality at the next transition if one of the channels is only

in a moderate state of failure rather than a severe state of failure.

3Tn other words, the system tends to remain as it is either if one channel is completely failed or
else if both channels are operating perfectly.

120

8.5 Quadratic Loss Function Examples

8.5.1 Introduction

Following the work of Genichi Taguchi, much of the modern quality literature shifts
the focus of quality engineering from “meeting specifications” to reducing variation
around the target value for the quality characteristic under consideration [253]; one
important quality characteristic for a pencil, for example, might be the hardness of
the lead, which can be quantified for each pencil and which can be brought on average
closer to target through application of robust design techniques. If variation from the
target value for a quality characteristic of a product or service produces a loss to the
customer, then it is valuable to quantify the extent of this loss so that improvements
may be assessed.

Existing models for quality loss using quadratic loss functions, when extended into
the time domain, lend themselves readily to modeling using standard continuum and
multistate reliability models. The quadratic loss function is treated in this section as
a type of reliability measure, and its expected value, variance, skewness, and kurtosis
are found in terms of easily calculable quantities.

If yo is the desired (“target”) value of a quality characteristic and y is the value it
assumes for a given product, the quadratic quality loss function is written as L(y) =
k(y — yo)?. Clearly, the quality loss L(y) is zero when the target yo is met. The
quality loss coefficient, k, is calculated for “nominal is best” quality characteristics as
k = Ag/AZ, where Ag is the cost to the customer incurred by a deviation of Aq from
the target value yo for some specific value of Ay (often calculated through examination
of the costs for repairs which bring the quality characteristic y back to target*). This

loss function is derived by taking the Taylor series expansion around a local minimum

4For the time-dynamic model presented here, Ay will be cost-per-unit-time rather than cost (as it

is in the time-invariant case); of course, once the expected cost-per-unit-time is found (E[L[¢(t)]]),
it may be integrated over a period of time to find the expected total cost that will be incurred in
that period of time due to deviations from target.

121

of a general loss curve, and dropping terms of order higher than 2.

In this section, we will demonstrate an approach to this model which allows y to be
a function of time, so that the time-based performance of this quality characteristic
may add additional insight into the nature of the variation-induced losses to the
customer. When y is allowed to be a function of time, it will be shown that the
resulting model may be fruitfully treated as a continuum and/or multistate reliability
model, with the quadratic loss function as a specific type of reliability measure.

Although it is not common in the reliability literature to consider cases where the
optimal value of a random variable is anything other than its maximal value, in the
quality literature it is quite common. For example, if there is a cost associated with
overproduction, and the quality characteristic under consideration is the production
rate of a refinery, then there will certainly be a cost associated with upward deviations
from nominal. Such cases will be considered in this section.

The use of quadratic loss functions in reliability measures was hinted at in a recent
doctoral dissertation example [214], but has not been developed in the literature. The
concept of reliability models where the maximal state might not be optimal (due to

varying customer demands) was originally explored by Aven [188§].

8.5.2 Methodology

In essence, we wish to find the expected value, variance, skewness, and kurtosis of a
function k(¢(t) — yo)? of a time-dynamic random variable ¢(t), and calculate all of
these reliability measures as functions of central moments of ¢(t). We would like to be
able to write the expressions for the expected value, variance, skewness, and kurtosis
of the quadratic loss function of ¢(t) as a function of the CDF for ¢(t), as density
functions are not available for the continuous component of mixed random variables
unless the discrete and continuous elements of its distribution are separated. As it
is more convenient not to have to separate the discrete and continuous components

of the CDF of ¢(t) for all values of ¢, we shall proceed with an approach which will

122

utilize only F[x,t] in its original form.
Employing a theorem proved in [263] for general CDF’s (and which has been used
earlier in this dissertation), we introduce the following expressions for the central

moments of random variables:
m; = B[X"] = /00 i1 — Fy(z) + (—1)'Fx(—2)]dx
0
of course, if X is a non-negative random variable, this reduces to
m; = E[X7] / T i1 — Fy(2)] da
0

Note that although the integrand in the above expressions may have up to a
countably infinite number of discontinuities (if the model has a discrete component),
it is still a standard Riemann integral, and many software packages have been written
which will efficiently perform quadrature on it.

Utilizing this notation, we may write the desired expressions for the mean, vari-
ance, skewness, and kurtosis of the quadratic loss function of a random variable in

terms of the m; terms (after some algebra) as follows:
k(yo — 2yorm + ma)

k*(—dydm? + dysmy + dygmimy — m3 — dygmg + my)

Skewness|L[¢(t)]]

2(98 — 2yomy + m2)3
— 3(yg — 2yomu + ma) (yg — 4ygma + 6ygme — dyoms + ma)
+ yg — 6y8m1 + 15y§m2 — QOyS’mg + 15y(2)m4 — bygms + mg

(—4y8m? =+ 4y8m2 =+ 4y0m1 mo — m% — 4y0m3 + m4>3/2

123

Kurtosis|L[¢(t)]]

— 3(y5 — 2yorm + my)"

+ 6(yg — 2yoma + ma)*(yy — 4y + Bygmy — dyoms + ma)

— 4(y§ — 2yoma + ma) (y§ — 6ygmu + 15ygma — 20ygms + 15y5my — Gyoms + me)
+ yg — 8ygm1 + 28y8m2 — 56y8m3 + 7Oy§m4 — 56y8’m5 + 28y(2)m6 — 8yomr + mg

(—4ydm? + 4ygma + dyomimg — m3 — dyoms + my)?
8.5.3 FEzample 1

Let us first consider an example where the optimal value is the maximal value for the

system: L[o(t)] = (1/2)(4(t) — 1)? (see Figure 8.18).

L[phi(t)]
Qual ity Loss Function

0.5
0.4
0.3

0.2

phi (t)
0.2 0.4 0.6 0.8 1

Figure 8.18: Example 1 Quality Loss Function

We consider a random variable for ¢(t) which is normally distributed, h-truncated
between 0 and 1, with mean 5/6 and standard deviation 1/2 (see Figure 8.19), and
compute the various functions of the quadratic loss function (see Table 8.18).

Of course, it should be emphasized that the loss function obtained is the loss per
unit time. Thus, if the CDF for ¢(t) and the values of k£ and y, are time invariant the
mean quality loss (in units of cost) over some time period At would be E[L[¢(t)]|At.

124

F[phi]
CDF for phi(t)

1
0.8
0.6
0.4
0.2

phi
-0.2 0.2 0.4 0.6 0.8 1 1.2

Figure 8.19: Example 1 Distribution

Table 8.18: Example 1 Measures
E[L[(t)]] 0.0915454
V[L[(t)]] 0.0202867
Skewness|L[o(t)]] 1.71532

Kurtosis[L[¢(t)]] 4.86313

¢
¢

If these expressions were not time invariant we could calculate the mean cost due to

variation as B[[Lig(t)] dt] = [+ B[L[6(1)]) dt

to to

8.5.4 FExample 2

Let us now consider an example where the optimal value is not the maximal value for
the system. We define the random variable ¢(t) to be the product output rate of a
factory, where demand for its product (per unit time) is yo. If the factory produces at
a rate greater than the demand, the excess production must be moved into storage, at
a cost per unit time proportional to the overproduction per unit time. If the factory

produces at a rate less than the demand, the product must be moved from storage at

125

a cost per unit time proportional to the underproduction per unit time.

For the sake of simplicity let us assume the cost of moving products to storage
is the same as the cost of moving products from storage, that the maximum output
rate is 1, that the minimum output rate is 0, and that yo = 5/6. We will utilize the
same CDF used in Section 8.5.3, and assume that an over or underproduction of 1/8
per unit time results in a cost of $32 per unit time. This means that & = 1/2 (see
Figure 8.20). The various functions of the quadratic loss function are calculated in

Table 8.19.

Table 8.19: Example 2 Measures

EL[6()]] 0.0581223
VILIo®)]] 0.00868945
Skewness|L[o(t)]] 2.08036
Kurtosis[L[¢(t)]] 6.20319

L phi (t)]

Qual ity Loss Function

— phi(t)

0.2 0.4 0.6 0.8

Figure 8.20: Example 2 Quality Loss Function

Chapter 9

FUTURE WORK

One aspect of this field which should be developed more carefully is the process
by which particular reliability measures are selected and justified for a given system.
In my opinion, there are two potentially fruitful avenues in this area which should be

explored:

1. Creating sophisticated “surveys” which determine the relationship between prod-
uct performance and customer-assessed reliability across similar types of prod-
ucts. The implicit assumption here is that the reliability measure which comes
closest to reflecting the experience of the “average customer” would be similar

across similar products. This would have to be proven.

2. Utilizing advances in cognitive neuroscience to identify potential reliability mea-

sures.

Item #2 deserves further explanation. Essentially, I suspect it may be possible
to identify likely candidates for reliability measures by examining the sorts of stim-
uli which humans respond positively and negatively to, based on shared behavioral
principles and goals. Dr. Stephen Pinker’s work [276] in this area shows considerable
promise.

It is true that more efficient algorithms to insure the monotonicity of an interpo-
lation in arbitrary numbers of dimensions may be possible. However, as a practical
matter, the activity which might be most valuable to researchers interested in non-

binary reliability models is the creation of a national or international repository for

127

real-world data sets suitable for non-binary reliability analyses. The multistate and
continuum reliability literature is conspicuously absent of real-world studies, and the
commencement of such studies would almost certainly suggest fruitful areas for further

theoretical inquiry.

SOFTWARE FUNCTION INDEX

A, 491
aij, 476
AM, 491

BernoulliSYS, 475

BinaryCDF, 473

BinomialSYS, 475
BoedigheimerParallelQ, 465
BoedigheimerReleventComponentsQ, 466
BoedigheimerSeriesQ, 465

Bounds2, 492

BPClean, 470
BPConsistentToEachOtherQ, 471
BPTypeFind, 471

C1, 491

C1iM, 491

CA, 491

CAM, 491

CAV, 491

CAVM, 491
CDFCumulativeStandardDeviation, 482
CDFDerivativeOfExpectedState, 481
CDFDerivativeOfLSP, 481
CDFExpectedLostOutput, 480
CDFExpectedOutput, 478

CDFExpectedScaledOutput, 480 198

CDFExpectedState, 478
CDFExpectedTotalOutput, 478
CDFF, 482

CDFHazard, 481

CDFHazardB, 481
CDFInterquartileRange, 486
CDFKurtosis, 484
CDFKurtosisExcess, 484
CDFLifetimeWeighted, 479
CDFLowerStatesProbability, 480
CDFMaximalStateProportion, 483
CDFMedian, 485

CDFMoment, 482
CDFOnStreamAvailability, 483
CDFPearsonSkewness2, 486
CDFQuadraticKurtosis, 486
CDFQuadraticKurtosisExcess, 486
CDFQuadraticMean, 485
CDFQuadraticSkewness, 485
CDFQuadraticVariance, 485
CDFQuantile, 484
CDFQuantileDown, 484
CDFQuantileUp, 484
CDFQuartileDeviation, 486

CDFQuartiles, 485

129

CDFR, 482 DegradationRate, 481
CDFRandom, 486 DerivativeOfExpectedState, 481
CDFRangeStatesProbability, 480 DerivativeOfLSP, 481
CDFSkewness, 483 DiscreteBuild, 491
CDFStateDwellTime, 479 DiscreteEntropy, 483

CDFStateStandardDeviation, 480

ExpectedFnState, 478
CDFStateVariance, 479

ExpectedLostOutput, 480
CDFUpperStatesDwellTime, 480

ExpectedOutput, 478
CDFUpperStatesProbability, 479

ExpectedScaledOutput, 480
CDFVariance0fOutputUB, 479

ExpectedSquaredSystemState, 481
ChebyshevUB, 482

ExpectedState, 478
CoherentQ, 464

ExpectedTotalOutput, 478
CohInputQ, 458

ExtremaAdd, 458
ConsistentProbabilitiesQ, 487

ContDisc, 453 FellerLists, 487
ContinuousEntropy, 483 FnEstimate, 475
CountableInfinityCDF, 474 FnEstimateVar, 475

CTMCMeanAbsorptionTimes, 477

GenAns, 457
CTMCMeanArrivals, 477

GreaterOrEqualQ, 462
CTMCStateProbabilities, 476

GreaterQ, 462
CTMCStayDurations, 478

GriddedRMSError, 461
CTMCSteadyStateProbabilities, 477

GridGenerate, 462
CumulativeStandardDeviation, 482

CustomerLimitsGamma, 475 Hazard, 481
CustomerLimitsWeibull, 475 HypergeometricSYS, 475
CutsFromUBP, 466

InclusionExclusionBoundsFromLBP, 488
CutsToPaths, 469

CUVUpperBound, 465 LBPFromPaths, 466

130

LBPFromStructure, 464
LBPSelfConsistentQ, 470
LBPToUBP, 468
LessOrEqualQ, 462

LessQ, 462
LifetimeWeighted, 479
LowerStatesProbability, 480
1tlldomm, 469

ltlposs, 468

1tludomm, 469

MaximalStateProportion, 482
MLinInt, 460

Moment, 482
MonteCarlo2, 453
MultiQuadric, 458
MultiQuadricC, 458
MultiQuadricND, 459
MultiQuadricND2, 493
MultiQuadricNDRMSError, 494
MultiQuadricRMSError, 461
MultistateCDF, 473

MuSigma, 495

NonDecreasingQ, 462
NonTruncatedCDF, 474

OnStreamAvailability, 483

P, 490

PathsFromLBP, 466
PathsToCuts, 469
pdc, 472

pdcs, 472

pde, 473
PDFADist, 454

pdfr, 473

pdg, 473

pdhn, 473

pdln, 473

pdncs, 473

pdnfr, 473

pdp2, 476
PDPAdjacent, 476
PDPErlangian, 476
PDPNonAdjacent, 476
pdpz2, 476

pdr, 473

pdw, 473

pdu, 473

perm2, 487

perm3, 454

PhiGrid, 461
PhiMax, 492
PhiMaxRMSError, 495
PhiMin, 492
PhiMinRMSError, 494
phirnd, 454

131

phiround, 492 rdnfr, 472

PM, 491 rdr, 472

ProperLimitsQ, 463 rdw, 472

pti, 476 rdu, 472

PToQ, 490 ReleventComponentsQ, 463

QToP, 490 ReliabilityImportance, 489
O 9

ReliabilityImportancesTable, 490

RandomGenerate, 461

RandomPhi, 461 8, 491
RangeStatesProbability, 480 se2, 487

RD, 455 Shepard, 458

RDO2, 455 ShepardGrid, 461

RDO3, 455 ShepardND, 459

RDO4, 455 ShepardRMSError, 461

RDO5, 456 SM, 491

RDO6, 456 StateDwellTime, 479

RDO7, 456 StateProbability, 479
RDO8, 456 StateStandardDeviation, 480
RDO9, 457 StateVariance, 479

RD10, 457 StieltjesIntegral, 490
rdc, 472 StieltjesIntegralG, 490
rdcs, 472 StieltjesIntegralH, 490
rde, 472 Structurallmportances, 466
rdfr, 472 StructureFromLBP, 471

rdg, 472 StructureFromPhi, 471
rdhn, 472 StructureFromUBP, 471
rdln, 472 SVStillOut, 495

rdncs, 472 SYSF, 482

132

SYSInterquartileRange, 486
SYSKurtosis, 483
SYSKurtosisExcess, 484
SYSMedian, 485
SYSPearsonSkewness2, 486
SYSQuadraticRaw, 485
SYSQuantile, 484
SYSQuartileDeviation, 486
SYSQuartiles, 485

SYSR, 482

SYSSkewness, 483

systable2, 487

systable2high, 493
systable2low, 493

systable3, 454
SystemFromDirectEnumeration, 487
SystemFromDirectEnumeration2, 454
SystemFromDirectEnumerationHigh, 493
SystemFromDirectEnumerationLow, 492
SystemFromLBPInclusionExclusion, 488
SystemLimitsFromBP, 471
SystemMatrix, 489
SystemSpaceFromBP, 471
SystemStateFromLBP, 469
SystemStateFromUBP, 470

TriangularCDF, 474
TriangularPDF, 475

TrivialBoundsFromLBP, 488
TruncatedCDF, 474
TruncatedPDF, 458

UBPFromCuts, 466
UBPFromStructure, 464
UBPSelfConsistentQ, 470
UBPToLBP, 467
UniformCDF, 474
UniformDiscreteSYS, 475
UniformMixedCDF, 474
UniformPDF, 474
UpperStatesDwellTime, 480
UpperStatesProbability, 479
utlldomm, 468

utlposs, 467
utludomm, 467

VarianceOfOutputUB, 478

VectorSpace, 462

1]

BIBLIOGRAPHY

J. A. Abraham. An algorithm for the accurate reliability evaluation of triple
modular redundancy networks. IEEE Transactions on Reliability, 23(7):682—
692, 1974.

J. A. Abraham. An improved algorithm for network reliability. IEEE Transac-
tions on Reliability, 28(1):58-61, 1979.

K. K. Aggarwal. Comments on: “On the analysis of fault trees”. IEFE Trans-
actions on Reliability, 25(2):126-127, 1976.

K. K. Aggarwal, K. B. Misra, and J. S. Gupta. A fast algorithm for reliability
evaluation. IEEE Transactions on Reliability, 24(1):83-85, 1975.

S. H. Ahmad. A simple technique for computing network reliability. IFEE
Transactions on Reliability, 31(1):41-44, 1982.

R. N. Allan, R. Billinton, and M. F. de Oliveira. An efficient algorithm for
deducing the minimal cuts and reliability indices of a general network configu-

ration. [EEE Transactions on Reliability, 25(4):226-233, 1976.

R. N. Allan, A. M. Leite da Silva, A. A. Abu-Nasser, and R. C. Burchett. Dis-
crete convolution in power system reliability. IEEE Transactions on Reliability,

30(5):452-456, 1981.

R. N. Allan, I. L. Rondiris, and D. M. Fryer. An efficient computational tech-
nique for evaluating the cut/tie sets and common-cause failures of complex

systems. IEEE Transactions on Reliability, 30(2):101-109, 1981.

134

9]

[10]

[11]

[12]

[14]

[18]

G. Almassy. Limits of models in reliability engineering. In Proceedings of the

Annual Reliability and Maintainability Symposium, pages 364-367, 1979.

S. Arnborg. Reduced state enumeration — another algorithm for reliability

evaluation. IEEE Transactions on Reliability, 27(2):101-105, 1978.

D. Assaf and B. Levikson. Closure of phase type distributions under operations

arising in reliability theory. Annals of Probability, 10(1):265-269, 1982.

S. K. Banerjee and S. D. Bhide. A technique to simplify reliability expressions.
IEEE Transactions on Reliability, 30(3):298-299, 1981.

S. K. Banerjee and K. Rajamani. Parametric representations of probability
in two dimensions — a new approach in system reliability evaluation. [EFEE

Transactions on Reliability, pages 56-60, 1972.

S. K. Banerjee and K. Rajamani. Closed form solutions for delta-star and
star-delta conversions of reliability networks. IEEE Transactions on Reliability,

25(2):118-119, 1976.

R. E. Barlow and S. Iyer. Computational complexity of coherent systems and
the reliability polynomial. Probability in the Engineering and Informational

Sciences, 2:461-469, 1988.

R. E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing:
Probability Models. Holt, Rinehart, and Winston, New York, 1975.

R. E. Barlow and F. Proschan. Some current academic research in system

reliability theory. IEEE Transactions on Reliability, 25(3):198-202, 1976.

R. G. Bennetts. On the analysis of fault trees. IEEE Transactions on Reliability,
24(3):175-185, 1975.

[19]

[20]

21

[22]

27]

28]

135

J. E. Biegel. Determination of tie sets and cut sets for a system without feedback.

IEEE Transactions on Reliability, 26(1):39-42, 1977.

Z. W. Birnbaum and J. D. Esary. Modules of coherent binary systems. Journal
of the Society for Industrial and Applied Mathematics, 13(2):444-462, 1965.

Z. W. Birnbaum, J. D. Esary, and S. C. Saunders. Multi-component systems
and structures and their reliability. Technometrics, 3(1):55-77, 1961.

H. W. Block. Dependent components with increasing failure rates and fail-
ure rate averages. In Proceedings of the Annual Reliability and Maintainability

Symposium, pages 99-101, 1978.

H. W. Block, N. A. Langberg, and T. H. Savits. Repair replacement policies.
Journal of Applied Probability, 30:194-206, 1993.

H. W. Block, N. A. Langberg, and T. H. Savits. Maintenance comparisons:
Block policies. Journal of Applied Probability, 27:649-657, 1990.

H. W. Block and T. H. Savits. The IFRA closure problem. Annals of Probability,
4(6):1030-1032, 1976.

L. D. Bodin. Optimization procedure for the analysis of coherent structures.

IEEE Transactions on Reliability, 18(3):118-136, 1969.

L. D. Bodin. Approximations to system reliability using a modular decomposi-

tion. Technometrics, 12(2):335-344, 1970.

T. B. Boffey and R. J. M. Waters. Calculation of system reliability by alge-
braic manipulation of probability expressions. IEEE Transactions on Reliability,

28(5):358-363, 1979.

136

[29]

[30]

[31]

32]

33]

[36]

[37]

[38]

G. R. Burdick, J. B. Fussell, D. M. Rasmuson, and J. R. Wilson. Phased mission
analysis: A review of new developments and an application. IEEE Transactions

on Reliability, 26(1):43-49, 1977.

R. W. Butterworth. A set theoretic treatment of coherent systems. SIAM
Journal on Applied Mathematics, 22(4):590-598, 1972.

J. A. Buzacott. Network approaches to finding the reliability of repairable
systems. IEEE Transactions on Reliability, 19(4):140-146, 1970.

W.-C. Chan. A generalized reliability function for systems of parallel compo-

nents. I[EEE Transactions on Reliability, 17(4):199-201, 1968.

W.-K. Chung. Generalized reliability function for systems of arbitrary configu-
rations. [EEE Transactions on Reliability, pages 85-87, 1971.

W. K. Chung and W. C. Chan. A new approach to reliability prediction. IEFE
Transactions on Reliability, 23(4):252-255, 1974.

C. A. Clarotti. Minimal-cut reliability lower-bound for systems containing

standby modules. I[EEE Transactions on Reliability, 30(3):293-297, 1981.

O. Coudert and J. C. Madre. MetaPrime: An interactive fault-tree analyzer.

IEEFE Transactions on Reliability, 43(1):121-127, 1994.

L. A. Cunningham and N. Singh. The reliability of coherent structures. IFEFE
Transactions on Reliability, pages 276-277, 1973.

J. deMercado, N. Spyratos, and B. A. Brown. A method for calculation of
network reliability. IEEE Transactions on Reliability, 25(2):71-76, 1976.

[39]

[40]

[41]

[42]

[48]

137

R. C. Dubes. Two algorithms for computing reliability. IEEE Transactions on
Reliability, pages 5563, 1963.

E. A. Elsayed. Reliability Engineering. Addison Wesley, Reading, Mas-
sachusetts, 1996.

J. Endrenyi. Algorithms for solving reliability models of systems exposed to a

2-state environment. [EEE Transactions on Reliability, 24(4):281-285, 1975.

J. D. Esary and A. W. Marshall. Coherent life functions. SIAM Journal on
Applied Mathematics, 18(4):810-814, 1970.

J. D. Esary, A. W. Marshall, and F. Proschan. Some reliability applications of
the hazard transform. SIAM Journal on Applied Mathematics, 18(4):849-680,
1970.

J. D. Esary and F. Proschan. Coherent structures of non-identical components.

Technometrics, 5(2):191-209, 1963.

J. D. Esary and F. Proschan. Relationship between system failure rate and

component failure rates. Technometrics, 5(2):183-189, 1963.

R. A. Evans. A generalized limit theorem for reliability. IEEE Transactions on
Reliability, 18(2):45-46, 1969.

J. P. Gadani and K. B. Misra. Quadrilateral-star transformation: An aid for re-
liability evaluation of large complex systems. IEEE Transactions on Reliability,

31(1):49-50, 1982.

O. Gokcek and G. L. Crellin. Markov analyses of nuclear plant failure dependen-
cies. In Proceedings of the Annual Reliability and Maintainability Symposium,

pages 104-109, 1979.

138

[49]

[51]

[53]

[54]

[55]

[56]

G. E. Gonzéalez-Urdaneta. Comments on: “A reduction technique for obtaining
a simplified reliability expression”. IEEE Transactions on Reliability, 28(1):68—
69, 1979.

G. E. Gonzalez-Urdaneta and B. J. Cory. Variance and approximate confidence
limits for probability and frequency of system failure. IEFE Transactions on

Reliability, 27(4):289-293, 1978.

K. Gopal and S. Rai. Discussion on “A reduction technique for obtaining sim-

plified reliability expression”. IEEE Transactions on Reliability, 28(1):66, 1979.

A. S. Heger, J. K. Bhat, D. W. Stack, and D. V. Talbott. Calculating ex-
act top-event probabilities using Y.1I-Patrec. IEEE Transactions on Reliability,
44(4):640-644, 1995.

K. D. Heidtmann. Improved method of inclusion-exclusion applied to k-out-of-n

systems. IEEE Transactions on Reliability, 31(1):36-40, 1982.

W. M. Hirsch, M. Meisner, and C. Boll. Cannibalization in multi-component
systems and the theory of reliability. Nawal Research Logistics Quarterly,
15:331-360, 1968.

J. A. M. Hontelez, H. H. Burger, and D. J. D. Wijnmalen. Optimum condition-
based maintenance policies for deteriorating systems with partial information.

Reliability Engineering and System Safety, 51:267-274, 1996.

A. Hgyland and M. Rausand. System Reliability Theory. Wiley, New York,
1994.

[57]

[58]

[59]

[60]

[61]

62]

[63]

[64]

[65]

139

C. L. Hwang, F. A. Tillman, and W. Kuo. Reliability optimization by gener-
alized Lagrangian-function and reduced-gradient methods. IEEE Transactions

on Reliability, 28(4):316-319, 1979.

C. L. Hwang, F. A. Tillman, and M. H. Lee. System-reliability techniques
for complex/large systems — a review. [EEE Transactions on Reliability,

30(5):416-423, 1981.

T. Inagaki, K. Inoue, and H. Akashi. Interactive optimization of system reliabil-
ity under multiple objectives. IEEE Transactions on Reliability, 27(4):264-267,
1978.

R. K. Iyer and T. Downs. A moment approach to evaluation and optimization
of complex system reliability. IEEE Transactions on Reliability, 27(3):226-229,
1978.

P. A. Jensen and M. Bellmore. An algorithm to determine the reliability of a
complex system. [EEE Transactions on Reliability, 18(4):169-174, 1969.

L. Kanderhag. Eigenvalue approach for computing the reliability of Markov
systems. IEEE Transactions on Reliability, 27(5):337-340, 1978.

K. C. Kapur. Optimization in design by reliability. AIIE Transactions, 7(2):185—
192, 1975.

K. C. Kapur. Reliability bounds in probabilistic design. I[EEE Transactions on
Reliability, 24(3):193-195, 1975.

K. C. Kapur. Handbook of Industrial Engineering, chapter 89. Wiley, second
edition, 1991.

140

[66]

[67]

[68]

[69]

[72]

[74]

K. C. Kapur and L. R. Lamberson. Reliability in Engineering Design. Wiley,
New York, 1977.

P. K. Kapur and K. R. Kapoor. Correction to “A 2-unit warm-standby re-

dundant system with delay and one repair facility”. I[IEEE Transactions on

Reliability, 27(5):388, 1978.

P. K. Kapur and K. R. Kapoor. Stochastic behavior of some 2-unit redundant
systems. IEEE Transactions on Reliability, 27(5):382-387, 1978.

Y. Kinberg and E. Shlifer. Some bounds for the reliability of a system with spec-
ified failure rate characteristics. IEEE Transactions on Reliability, 19(4):191-
193, 1970.

E. V. Krishnamurthy and G. Komissar. Computer-aided reliability analysis of
complicated networks. IEEE Transactions on Reliability, 21(2):86-89, 1972.

A. Kumar, R. M. Pathak, and Y. P. Gupta. Genetic-algorithm-based reliability
optimization for computer network expansion. IEEE Transactions on Reliabil-

ity, 44(1):63-72, 1995.

M. O. Locks. The maximum error in system reliability calculations by using a
subset of the minimal states. IEEE Transactions on Reliability, 20(4):231-234,
1971.

M. O. Locks. Evaluating the KTI Monte Carlo method for system reliability
calculations. IEEE Transactions on Reliability, 28(5):368-372, 1979.

M. O. Locks. Recursive disjoint products, inclusion-exclusion, and min-cut

approximations. IEEE Transactions on Reliability, 29(5):368-371, 1980.

141

[75] M. O. Locks. Fault trees, prime implicants, and noncoherence. IEEE Transac-

tions on Reliability, 29(2):130-135, 1980.

[76] K. K. Lee. A compilation technique for exact system reliability. IEEE Trans-
actions on Reliability, 30(3):284-288, 1981.

[77] L. L. Levy and A. H. Moore. A Monte Carlo technique for obtaining system
reliability confidence limits from component test data. IEEE Transactions on

Reliability, 16(2):69-72, 1967.

[78] P. M. Lin, B. J. Leon, and T. C. Huang. A new algorithm for symbolic system
reliability analysis. IEEE Transactions on Reliability, 25(1):2-15, 1976.

[79] D. Magee and A. Refsum. RESIN, a desktop-computer program for finding
cut-sets. IEEE Transactions on Reliability, 30(5):407-410, 1981.

[80] D. W. McLeavey and J. A. McLeavey. Optimization of system reliability by
branch-and-bound. IEEE Transactions on Reliability, 25(5):327-329, 1976.

[81] K. B. Misra. A simple approach for constrained redundancy optimization prob-

lem. IEEFE Transactions on Reliability, 21(1):30-34, 1972.

[82] A. H. Moore, H. L. Harter, and R. C. Snead. Comparison of Monte Carlo
techniques for obtaining system-reliability confidence limits. IEEE Transactions

on Reliability, 29(4):327-331, 1980.

[83] D. N. Naik. Estimating the parameters of a 2-out-of-3:F' system. I[EEE Trans-
actions on Reliability, 30(5):464-465, 1981.

[84] T. Nakagawa. On a cumulative damage model with N different components.

IEEE Transactions on Reliability, 25(2):112-114, 1976.

142

[85]

[86]

[87]

[83]

[94]

W. Nelson. Analysis of performance-degradation data from accelerated tests.

IEEFE Transactions on Reliability, 30(2):149-155, 1981.

A. C. Nelson, Jr., J. R. Batts, and R. L. Beadles. A computer program for
approximating system reliability. IEEE Transactions on Reliability, 19(2):61—
65, 1970.

L. Painton and J. Campbell. Genetic algorithms in optimization of system

reliability. IEEE Transactions on Reliability, 44(2):172-178, 1995.

G. D. M. Pearson. Computer program for approximating the reliability charac-
teristics of acyclic directed graphs. IEEE Transactions on Reliability, 26(1):32—
38, 1977.

M. J. Phillips. k-out-of-n systems are preferable. I[EEE Transactions on Relia-
bility, 29(2):166-169, 1980.

A. Prékopa. Sharp bounds on probabilities using linear programming. Opera-

tions Research, 38(2):227-239, 1990.

S. Rai and K. K. Aggarwal. An efficient method for reliability evaluation of a
general network. IEEE Transactions on Reliability, 27(3):206-211, 1978.

S. Rai and K. K. Aggarwal. On complementation of pathsets and cutsets. I[EEFE
Transactions on Reliability, 29(2):139-140, 1980.

A. Rosenthal. Note on “Closed form solutions for delta-star and star-delta
conversion of reliability networks”. IEEE Transactions on Reliability, 27(2):110-
111, 1978.

A. Rosenthal. Approaches to comparing cut-set enumeration algorithms. IFEE

Transactions on Reliability, 28(1):62-65, 1979.

[95]

[96]

197]

98]

[100]

[101]

[102]

[103]

[104]

143

M. Sakawa. Multiobjective optimization by the surrogate worth trade-off

method. IEEE Transactions on Reliability, 27(5):311-314, 1978.

A. Satyanarayana and M. K. Chang. Network reliability and the factoring
theorem. In Networks, volume 13, pages 107-120. Wiley, New York, 1983.

A. Satyanarayana and A. Prabhakar. New topological formula and rapid al-

gorithm for reliability analysis of complex formulas. IFEE Transactions on

Reliability, 27(2):82-100, 1978.

F. A. Schouten and S. G. Vanneste. Two simple control policies for a multi-

component maintenance system. Operations Research, 41(6):1125-1136, 1993.

J. Sharma. Algorithm for reliability evaluation of a reducible network. [EEE
Transactions on Reliability, 25(5):337-339, 1976.

A. W. Shogan. Sequential bounding of the reliability of a stochastic network.
Operations Research, 34(6):1027-1044, 1976.

A. W. Shogan. A recursive algorithm for bounding network reliability. I[FEE
Transactions on Reliability, 26(5):322-327, 1977.

C. Singh. A cut set method for reliability evaluation of systems having s-

dependent components. IEEE Transactions on Reliability, 29(5):372-375, 1980.

C. Singh and R. Billinton. A new method to determine the failure frequency of
a complex system. IEEE Transactions on Reliability, 23(4):231-234, 1974.

N. Singh and S. Kumar. Reliability bounds for decomposable multi-component

systems. IEEE Transactions on Reliability, 29(1):22-23, 1980.

144

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

R. Teoste. Digital circuit redundancy. IEEE Transactions on Reliability, pages
42-61, 1964.

F. A. Tillman, C.-L.. Hwang, and W. Kuo. Optimization techniques for system
reliability with redundancy — a review. [EEE Transactions on Reliability,

26(3):148-155, 1977.

R. K. Tiwari and M. Verma. An algebraic technique for reliability evaluation.

IEEE Transactions on Reliability, 29(4):311-313, 1980.

A. Winterbottom and J. C. Verrall. Confidence limits for system reliability: A
sequential method. IEEE Transactions on Reliability, 20(4):204-211, 1971.

B. P. Zelentsov. Reliability analysis of large nonrepairable systems. I[FEE
Transactions on Reliability, 19(4):152-156, 1970.

R. E. Barlow and F. Proschan. Importance of system components and fault

tree analysis. Stochastic Processes and their Applications, 3:153-173, 1975.

Z. W. Birnbaum. On the importance of different components in a multicompo-
nent system. In Multivariate Analysis 11, pages 581-592. Academic Press, New
York, 1969.

K. Nakashima and K. Yamato. Variance-importance of system components.

IEEFE Transactions on Reliability, 31(1):99-100, 1982.

B. Natvig. A suggestion of a new measure of importance of system components.

Stochastic Processes and their Applications, 9:319-330, 1979.

A. M. Abouammah, E. El-Neweihi, and F. Proschan. Schur structure functions.

Probability in the Engineering and Informational Sciences, 3:581-591, 1989.

[115]

[116]

117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

145

R. E. Barlow and A. S. Wu. Coherent systems with multistate components.

Mathematics of Operations Research, 3(4):275-281, 1978.

W. Borges and F. Rodrigues. An axiomatic characterization of multistate co-

herent structures. Mathematics of Operations Research, 8(3):435-438, 1983.

D. A. Butler. Bounding the reliability of multistate systems. Operations Re-
search, 30:530-544, 1982.

G. Cafaro, F. Corsi, and F. Vacca. Multistate Markov models and structural
properties of the transition-rate matrix. IFEFE Transactions on Reliability,

35(2):192-200, 1986.

L. Caldarola. Coherent systems with multistate components. Nuclear Engineer-

ing and Design, 58:127-139, 1980.

N. Ebrahimi. Multistate reliability models. Naval Research Logistics Quarterly,
31:671-680, 1984.

E. El-Neweihi, F. Proschan, and J. Sethuraman. Multistate coherent systems.

Journal of Applied Probability, 15:675-688, 1978.

E. A. Elsayed and A. Zebib. A repairable multistate device. IEEE Transactions
on Reliability, 28(1):81-82, 1979.

R. C. Garg and A. Kumar. A complex system with two types of failure and
repair. IEEE Transactions on Reliability, 26(4):299-300, 1977.

W. S. Griffith. Multistate reliability models. Journal of Applied Probability,
17:735-744, 1980.

146

[125]

[126]

[127]

[128)]

[129]

[130]

[131]

[132]

[133]

H. Gupta and J. Sharma. A delta-star transformation approach for reliability
evaluation. IEEE Transactions on Reliability, 27(3):212-214, 1978.

Y. Hatoyama. Reliability analysis of 3-state systems. IEFEE Transactions on
Reliability, 28(5):386-393, 1979.

A. Karamchandani and C. A. Cornell. Reliability analysis of truss structures
with multistate elements I1. Journal of Structural Engineering, 118(4):910-925,
1992.

J. Karpinski. A multistate system under an inspection and repair policy. IEEE

Transactions on Reliability, 35(1):76-77, 1986.

E. Korczak. Reliability analysis of multistate monotone systems. In Proceed-
ings of the Furopean Safety and Reliability Conference, pages 671-682, Munich,
Germany, May 1993. Elsevier Science.

A. Kossow and W. Preuss. Reliability of linear consecutively-connected systems
with multistate components. IEEE Transactions on Reliability, 44(4):518-522,
1995.

C. T. Lam and R. H. Yeh. Optimal replacement policies for multistate deteri-
orating systems. Nawval Research Logistics, 44:303-315, 1994.

A.-A. Mohamed. Multicriteria Optimization Applied to Multistate Repairable
Components. PhD thesis, University of Oklahoma, 1990.

G. S. Mokaddis and M. L. Tawfek. Some characteristics of a two-dissimilar-
unit cold standby redundant system with three modes. Microelectronics and

Reliability, 36(4):497-503, 1996.

[134]

[135]

[136]

137]

138

[139]

[140]

[141]

147

J. D. Murchland. Fundamental concepts and relations for reliability analysis of
multi-state systems. In Proceedings of the 197} Conference on Reliability and
Fault Tree Analysis, pages 561-618, University of California, Berkeley, Septem-
ber 1975.

B. Natvig. Two suggestions of how to define a multistate coherent system.

Advances in Applied Probability, 14:434-455, 1982.

F. Ohi and T. Nishida. On multistate coherent systems. IEEFE Transactions on
Reliability, 33(4):284-287, 1984.

A. Pedar and V. V. S. Sarma. Phased-mission analysis for evaluating the ef-

fectiveness of aerospace computing-systems. [EEFE Transactions on Reliability,

30(5):429-437, 1981.

C. L. Proctor, Il and C. L. Proctor. Multistate-time dependent system mod-
eling. In Proceedings of the Annual Reliability and Maintainability Symposium,
pages 401-403, 1977.

N. Satoh, M. Sasaki, T. Yuge, and S. Yanagi. Reliability of 3-state device sys-
tems with simultaneous failures. IEEE Transactions on Reliability, 42(3):470-
477, 1993.

R. M. Simon. Optimal cannibalization policies for multicomponent systems.

SIAM Journal on Applied Mathematics, 19(4):700-711, 1970.

M. Veeraraghavan and K. S. Trivedi. A combinatorial algorithm for perfor-
mance and reliability analysis using multistate models. IEEE Transactions on

Computers, 43(2):229-234, 1994.

148

[142]

[143]

[144]

[145]

[146]

[147)

[148]

[149]

[150]

J. Xue and K. Yang. Symmetric relations in multistate systems. IEFE Trans-

actions on Reliability, 44(4):689-693, 1995.

J. Yinzhong, X. Fengzhang, G. Jinzhong, and C. Wensu. A study on quantita-
tive analysis of human reliability with inspection. Reliability Engineering and

System Safety, 44:83-87, 1994.

H. W. Block and T. H. Savits. A decomposition for multistate monotone sys-

tems. Journal of Applied Probability, 19:391-402, 1982.

R. A. Boedigheimer and K. C. Kapur. Involving the customer in the devel-
opment and evaluation of multistate reliability models. In Proceedings of the

Annual Reliability and Maintainability Symposium, pages 250255, 1993.

R. A. Boedigheimer and K. C. Kapur. Customer-driven reliability models for
multistate coherent systems. IEEE Transactions on Reliability, 43(1):46-50,
1994.

M. N. Fardis and C. A. Cornell. Analysis of coherent multistate systems. I[FEFE
Transactions on Reliability, 30(2):117-122, 1981.

E. Funnemark and B. Natvig. Bounds for the availabilities in a fixed time inter-
val for multistate monotone systems. Advances in Applied Probability, 17:638—
665, 1985.

N. L. Hjort, B. Natvig, and E. Funnemark. The association in time of a Markov
process with application to multistate reliability theory. Journal of Applied
Probability, 22:473-479, 1985.

J. C. Hudson. The Structure and Reliability of Multistate Systems with Multi-
state Components. PhD thesis, Wayne State University, Detroit, 1981.

[151]

[152]

[153]

154]

[155]

[156]

[157]

[158]

[159]

[160]

149

J. C. Hudson and K. C. Kapur. Reliability analysis for multistate systems with
multistate components. IIE Transactions, 15(2):127-135, 1983.

J. C. Hudson and K. C. Kapur. Modules in coherent multistate systems. IEEE
Transactions on Reliability, 32(3):183-185, 1983.

J. C. Hudson and K. C. Kapur. Reliability bounds for multistate systems with
multistate components. Operations Research, pages 153—-160, 1985.

F. K. Hwang and Y. C. Yao. Multistate consecutively-connected systems. I[EEFE
Transactions on Reliability, 38(4):472-474, 1989.

X. Janan. On multistate system analysis. IEEFE Transactions on Reliability,

34(4):329-337, 1985.

K. C. Kapur. Reliability engineering and robust design. In Proceedings of the
Ford 2000 Conference on Integration of Quality Methods, Dearborn, Michigan,
November 1994.

J. Malinowski and W. Preuss. Reliability of circular consecutively-connected
systems with multistate components. [EEE Transactions on Reliability,

44(3):532-534, 1995.

J. Malinowski and W. Preuss. Reliability of reverse-tree-structured systems

with multistate components. Microelectronics and Reliability, 36(1):1-7, 1995.

J. Malinowski and W. Preuss. Reliability evaluation for tree-structured systems

with multistate components. Microelectronics and Reliability, 36(1):9-17, 1995.

B. Natvig. Strict and exact bounds for the availabilities in a fixed time interval
for multistate monotone systems. Scandinavian Journal of Statistics, 20:171—

175, 1993.

150

[161] M. L. Neilsen. Structures for fault-tolerant distributed protocols. In Proceedings
of the Annual IEEE International Conference on Computers and Communica-

tions, pages 84-89, 1994.

[162] B. Natvig and A. Streller. The steady-state behavior of multistate monotone
systems. Journal of Applied Probability, 21:826-835, 1984.

[163] B. Natvig, S. Sgrmo, A. T. Holen, and G. Hggasen. Multistate reliability theory
— a case study. Advances in Applied Probability, 18:921-932, 1986.

[164] J. Shao and K. C. Kapur. Multilevel modular decomposition for multistate sys-
tems. In Proceedings of the Annual Reliability and Maintainability Symposium,

pages 102-107, 1989.

[165] A. P. Wood. Multistate block diagrams and fault trees. IEEE Transactions on
Reliability, 34(3):236-240, 1985.

[166] M. J. Zuo and M. Liang. Reliability of multistate consecutively-connected sys-
tems. Reliability Engineering and System Safety, 44:173-176, 1994.

[167] T. Aven. Reliability evaluation of multistate systems with multistate compo-

nents. [EEE Transactions on Reliability, 34(5):473-479, 1985.

[168] T. Aven. Availability evaluation of oil/gas production and transportation sys-

tems. Reliability Engineering, 18:35-44, 1987.

[169] T. Aven. Reliability and Risk Analysis, chapter 4. Elsevier Science, England,
1992.

[170] S. M. Ross. Multivalued state component systems. Annals of Probability,
7(2):379-383, 1979.

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

151

K. Yu, I. Koren, and Y. Guo. Generalized multistate monotone coherent sys-

tems. IEEE Transactions on Reliability, 43(2):242-254, 1994.

A. M. Abouammoh and M. A. Al-Kadi. Component relevancy in multistate
reliability models. IEEE Transactions on Reliability, 40(3):370-379, 1991.

E. El-Neweihi and F. Proschan. Component relevancy in multistate systems.

In Multistate Analysis VI, pages 203-208. Elsevier Science, 1985.

[. Kuhnert. Comment on: “Component relevancy in multistate reliability mod-

els”. IEEE Transactions on Reliability, 44(1):95-96, 1995.

F. C. Meng. Component-relevancy and characterization results in multistate

systems. IEEE Transactions on Reliability, 42(3):478-483, 1993.

A. M. Abouammoh and M. A. Al-Kadi. On measures of importance for
components in multistate coherent systems. Microelectronics and Reliability,

31(1):109-122, 1991.

A. Bossche. Calculation of critical importance for multi-state components. IEEE

Transactions on Reliability, 36(2):247-249, 1987.

D. A. Butler. A complete importance ranking for components of binary coher-
ent systems, with extensions to multi-state systems. Naval Research Logistics

Quarterly, 26:565-578, 1979.

M. S. Finkelstein. Once more on measures of importance of system components.

Microelectronics and Reliability, 34(9):1431-1439, 1994.

P. Kuzminski. Measures of importance in the reliability modeling of multistate

component systems. Master’s thesis, University of Virginia, 1993.

152

[181]

[182]

[183]

[184]

[185)

[186]

[187]

[188]

[189)]

S.-N. Chiou and V. O. K. Li. Reliability analysis of a communication network
with multimode components. IEEE Journal on Selected Areas in Communica-

tions, 4(7):1156-1161, 1986.

B. S. Dhillon and S. N. Rayapati. A method to evaluate reliability of three-state
device networks. Microelectronics and Reliability, 26(3):535-554, 1986.

K. Gopal, K. K. Aggarwal, and J. S. Gupta. Reliability analysis of multistate
device networks. I[EEE Transactions on Reliability, 27(3):233-235, 1978.

C.-C. Jane, J.-S. Lin, and J. Yuan. Reliability evaluation of a limited-flow net-
work in terms of minimal cutsets. [EEE Transactions on Reliability, 42(3):354—

368, 1993.

B. Singh and C. L. Proctor. Reliability analysis of multistate device networks.
In Proceedings of the Annual Reliability and Maintainability Symposium, pages
30-35, 1976.

C. R. Tripathy, S. Patra, R. B. Misra, and R. N. Mahapatra. Reliability evalu-
ation of multistage interconnection networks with multi-state elements. Micro-

electronics and Reliability, 36(3):423-428, 1995.

P. K. Varshney, A. R. Joshi, and P.-L.. Chang. Reliability modeling and per-
formance evaluation of variable-link capacity networks. IEEE Transactions on

Reliability, 43(3):378-382, 1994.

T. Aven. On performance measures for multistate monotone systems. Reliability

Engineering and System Safety, 41:259-266, 1993.

R. Brunelle and K. C. Kapur. Customer-centered reliability methodology. In

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

[198]

153

Proceedings of the Annual Reliability and Maintainability Symposium, pages
286292, 1997.

J. A. Jenny. The effect of partial failure modes on reliability analysis. [EEFFE
Transactions on Reliability, 18(4):175-180, 1969.

F. A. Tillman, C. H. Lie, and C. L. Hwang. Analysis of pseudo-reliability of a
combat tank system and its optimal design. IEEE Transactions on Reliability,

25(4):239-242, 1976.

K. S. Trivedi, J. K. Muppala, S. P. Woolet, and B. R. Haverkort. Composite
performance and dependability analysis. Performance Evaluation, 14:239-242,

1992.

J. Xue and K. Yang. Dynamic reliability analysis of coherent multistate systems.

IEEE Transactions on Reliability, 44(4):683-688, 1995.

K. Yang and J. Xue. Dynamic reliability measures and life distribution models
for multistate systems. International Journal of Reliability, Quality, and Safety

Engineering, 2(1):79-102, 1995.

L. A. Baxter. Continuum structures . Journal of Applied Probability, 21:802—
815, 1984.

L. A. Baxter. Continuum structures II. Mathematical Proceedings of the Cam-

bridge Philosophical Society, 99:331-338, 1986.

L. A. Baxter and C. Kim. Bounding the stochastic performance of continuum

structure functions 1. Journal of Applied Probability, 23:660-669, 1986.

H. W. Block and T. H. Savits. Continuous multistate structure functions. Op-

erations Research, 32:703-714, 1984.

154

[199]

200]

201]

202]

203]

204]

205

[206]

207]

208

R. Brunelle and K. C. Kapur. Continuous structure function reliability: An
interpolation approach. In Proceedings of the Annual Industrial Engineering

Research Conference, pages 48-53, 1997.

B. Cappelle and E. E. Kerre. On a possibilistic approach to reliability theory.
In Proceedings of the International Symposium on Uncertainty Modeling and

Analysis, pages 415-418, 1993.

S. N. Iyer and Y. S. Sathe. Redundancy in Barlow-Wu structures. Journal of
the Operational Research Society, 41(9):843-851, 1990.

C. Kim and L. A. Baxter. Axiomatic characterization of continuum structure

functions. Operations Research Letters, 6(6):297-300, 1987.

K. Mak. A note on Barlow-Wu structure functions. Operations Research Letters,

8:43-44, 1989.

J. Montero. Fuzzy coherent systems. Kybernetes, 17(4):28-33, 1988.

J. Montero, J. Tejada, and J. Yanez. Structural properties of continuum sys-

tems. European Journal of Operational Research, 45:231-240, 1990.

K. Yang and K. Kapur. Customer-driven reliability: Integration of QFD and
robust design. In Proceedings of the Annual Reliability and Maintainability
Symposium, pages 339-345, 1997.

K. Yang and J. Xue. Continuous state reliability analysis. In Proceedings of the
Annual Reliability and Maintainability Symposium, pages 251-257, 1996.

J. Montero. Observable structure functions. Kybernetes, 22(2):31-39, 1993.

[209]

210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

155

J. Montero. Reliability bounds for multicriteria systems. Journal of the Oper-

ational Research Society, 44(10):1025-1034, 1993.

J. Montero, J. Tejada, and J. Yanez. General structure functions. Kybernetes,

23(3):10-19, 1994.

V. Cutello and J. Montero. Reliability structure functions based upon fuzzy
numbers. In Proceedings of the IEEE Conference on Fuzzy Systems, volume 3,

pages 2046-2050, 1994.

O. Kaleva. Fuzzy performance of a coherent system. Journal of Mathematical

Analysis and Applications, 117:234-246, 1986.

H. W. Block and T. H. Savits. Decompositions for multistate monotone systems.

In Reliability Theory and Models, pages 231-241. Academic Press, 1984.

R. A. Boedigheimer. Customer-Driven Reliability Models for Multistate Coher-
ent Systems. PhD thesis, University of Oklahoma, 1992.

F. C. Meng. Characterizing the Barlow-Wu structure functions. Naval Research

Logistics, 41:661-668, 1994.

R. Brunelle. RelPack: A System for Performing Binary, Multistate, and Contin-
uwous Reliability Calculations in the Mathematica Environment, 1996. Published

on the Internet.

C.-H. Cheng. Fuzzy consecutive k-out-of-n:F system reliability. Microelectronics

and Reliability, 34(12):1909-1922, 1994.

G. Hartless and L. Leemis. Computational algebra applications in reliability

theory. IEEE Transactions on Reliability, 45(3):393-399, 1996.

156

[219]

220]

[221]

222]

223]

[224]

225

226

227]

228

L. Rade. Reliability survival equivalence. Microelectronics and Reliability,

33(6):881-894, 1993.

R. Brunelle. Mathematics for Engineers and Scientists (5th ed.) by Alan Jeffrey:
Mathematica 3.0 Solutions Manual, 1997. Published on the Internet.

E. Kreyszig and E. J. Norminton. Advanced Engineering Mathematics: Mathe-
matica Computer Manual. Wiley, New York, seventh edition, 1995.

S. Wolfram. The Mathematica Book. Cambridge University Press, 1996.

Wolfram Research. Mathematica 3.0 Standard Add-On Packages. Cambridge
University Press, 1996.

P. Alfeld. Scattered data interpolation in three or more variables. In Mathe-
matical Methods in Computer Aided Geometric Design, pages 1-33. Academic
Press, Boston, 1989.

R. K. Beatson and Z. Ziegler. Monotonicity preserving surface interpolation.

SIAM Journal on Numerical Analysis, 22(2):401-411, 1985.

R. E. Carlson and T. A. Foley. The parameter 2? in multiquadric interpolation.
Computers and Mathematics with Applications, 21:29-42, 1991.

R. E. Carlson and F. N. Fritsch. Monotone piecewise bicubic interpolation.

SIAM Journal on Numerical Analysis, 22(2):386-400, 1985.

N. Dyn, D. Levin, and S. Rippa. Numerical procedures for surface fitting of
scattered data by radial functions. SIAM Journal on Scientific and Statistical
Computing, 7(2):639-659, 1986.

[229]

230]

[231]

232]

[233]

[234]

[235]

[236]

237]

157

T. A. Foley and H. Hagen. Advances in scattered data interpolation. Surveys
on Mathematics for Industry, 4:71-84, 1994.

R. Franke and G. Nielson. Scattered data interpolation and applications: A
tutorial and survey. In Geometric Modeling Methods and Applications, pages
131-160. Springer-Verlag, New York, 1991.

R. L. Hardy. Multiquadric equations of topography and other irregular surfaces.
Journal of Geophysical Research, 76(8):1905-1915, 1971.

C. A. Micchelli. Interpolation of scattered data: Distance matrices and condi-

tionally positive definite functions. Constructive Approximation, 2:11-22, 1986.

G. M. Nielson. Scattered data modeling. IEEE Computer Graphics and Appli-
cations, pages 6070, 1993.

G. M. Nielson, T. A. Foley, B. Hamann, and D. Lane. Visualizing and modeling
scattered multivariate data. IEEE Computer Graphics and Applications, pages
47-54, 1991.

D. Shepard. A two-dimensional interpolation function for irregularly-spaced

data. In Proceedings of the ACM National Conference, pages 517-524, 1968.

A. E. Tarwater. A parameter study of Hardy’s multiquadric method for scat-
tered data interpolation. Technical Report UCRL-53670, Lawrence Livermore
National Laboratory, 1985.

F. 1. Utreras. Constrained surface construction. In Topics in Multivariate

Approximation, pages 233-254. Academic Press, Boston, 1987.

158

[238]

[239]

[240]

241

[242]

243]

244]

245

246

E. W. Anderson, C. Fornell, and D. R. Lehmann. Customer satisfaction, market
share, and profitability: Findings from Sweden. Journal of Marketing, 58:53-66,
1994.

M. J. Beckmann and K. C. Kapur. Conjugate duality: Some applications to
economic theory. Journal of Economic Theory, 5(2):292-302, 1972.

G. Chen and K. C. Kapur. Tolerance design by break-even analysis for reducing
variation and cost. International Journal of Reliability, Quality, and Safety

Engineering, 1(4):445-457, 1994.

D. C. Dorrough. A theoretical analysis of system quality. IEEE Transactions
on Reliability, 20(3):169-177, 1971.

J. E. Ettlie and M. D. Johnson. Product development benchmarking versus cus-

tomer focus in applications of quality function deployment. Marketing Letters,

5(2):107-116, 1994.

C. Fornell and M. D. Johnson. Differentiation as a basis for explaining customer
satisfaction across industries. Journal of Economic Psychology, 14:681-696,

1993.

C. Fornell, M. D. Johnson, E. W. Anderson, J. Cha, and B. E. Bryant. The
American Customer Satisfaction Index: Nature, purpose, and findings. Journal

of Marketing, 60:7-18, 1996.

A. Gustafsson and M. D. Johnson. Bridging the quality-satisfaction gap. Quality
Management Journal, 4(3):27-43, 1997.

International Organization for Standardization. ISO 8402: Quality Manage-

ment and Quality Assurance — Vocabulary, second edition, 1994.

[247]

[248]

[249]

[250]

251]

[252]

253]

[254]

[255]

[256]

159

M. D. Johnson, E. W. Anderson, and C. Fornell. Rational and adaptive perfor-
mance expectations in a customer satisfaction framework. Journal of Consumer

Research, 21:695-707, 1995.

M. D. Johnson and C. Fornell. A framework for comparing customer satisfaction
across individuals and product categories. Journal of Economic Psychology,

12:267-286, 1991.

K. C. Kapur. An approach for development of specifications for quality im-
provement. Quality Engineering, 1(1):63-77, 1988.

K. C. Kapur. An integrated customer-focused approach for quality and relia-
bility. In International Conference on Quality and Reliability, volume 1, pages

9-17, 1997.

K. C. Kapur and B.-R. Cho. Economic design and development of specifications.
Quality Engineering, 6(3):401-417, 1994.

R. L. Oliver. A cognitive model of the antecedents and consequences of satis-

faction decisions. Journal of Marketing Research, 17:460-469, 1980.
M. Phadke. Quality Engineering Using Robust Design. Prentice-Hall, 1989.

W. Karwowski and A. Mital. Potential applications of fuzzy sets in industrial

safety engineering. Fuzzy Sets and Systems, 19:105-120, 1986.

K. S. Park. Fuzzy apportionment of system reliability. IEEE Transactions on
Reliability, 36(1):129-132, 1987.

P. V. Suresh, D. Chaudhuri, and B. V. A. Rao. Fuzzy-set approach to se-
lect maintenance strategies for multistate equipment. IEEE Transactions on

Reliability, 43(3):451-456, 1994.

160

[257]

[258)]

[259]

[260]

[261]

262]

263]

[264]

265

[266]

267]

G. L. Crellin. The philosophy and mathematics of Bayes’ equation. I[IFEE
Transactions on Reliability, 21(3):131-135, 1972.

R. G. Easterling. A personal view of the Bayesian controversy in reliability and

statistics. IEEE Transactions on Reliability, 21(3):186-194, 1972.

D. R. Gimlin and A. M. Breipohl. Bayesian acceptance sampling. IEEE Trans-
actions on Reliability, 21(3):176-180, 1972.

W. J. Macfarland. Bayes’ equation, reliability, and multiple hypothesis testing.
IEEFE Transactions on Reliability, 21(3):136-147, 1972.

R. L. Racicot. Approximate confidence intervals for reliability of a series system.

IEEE Transactions on Reliability, 25(4):265-269, 1976.

R. A. Evans. Proper proof of a reliability theorem. I[EEE Transactions on
Reliability, 18(4):205-206, 1969.

W. Feller. An Introduction to Probability Theory and Its Applications, volume 2.
Wiley, New York, second edition, 1971.

S. W. Golomb. Mathematical models: Uses and limitations. IEEE Transactions
on Reliability, 20(3):130-131, 1971.

P. G. Hoel, S. C. Port, and C. J. Stone. Introduction to Stochastic Processes.
Houghton Mifflin, Boston, 1972.

A. Jeffrey. Mathematics for Engineers and Scientists. Chapman and Hall,
London, fifth edition, 1996.

S. Karlin and H. Taylor. An Introduction to Stochastic Modeling. Academic
Press, San Diego, 1984.

268

[269]

270]

[271]

272]

273]

[274]

[275]

[276]

277]

161

A. Karr. Probability. Springer-Verlag, New York, 1993.

M. Loeve. Probability Theory. D. van Nostrand, Princeton, New Jersey, second

edition, 1960.

D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for
Engineers. Wiley, New York, 1994.

P. Moran. An Introduction to Probability Theory. Oxford University Press,
1968.

A. Mosleh and G. Apostolakis. Some properties of distributions useful in the
study of rare events. IEEE Transactions on Reliability, 31(1):87-94, 1982,

T. Nakagawa and H. Yoda. Relationships among distributions. IEEE Transac-
tions on Reliability, 26(5):352-353, 1977.

E. Parzen. Modern Probability Theory and Its Applications. Wiley, New York,
1960.

E. Parzen. Stochastic Processes. Holden-Day, San Francisco, 1962.

S. Pinker. How the Mind Works. W. W. Norton, New York, 1997.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
second edition, 1992.

[278] W. G. Schneeweiss. Calculating the probability of Boolean expression being 1.

IEEE Transactions on Reliability, 26(1):16-22, 1977.

162

[279] C. Singh. Calculating the frequency of Boolean expression being 1. IEEE
Transactions on Reliability, 26(5):354-358, 1977.

Appendix A

GUIDE TO BIBLIOGRAPHY

A.1 Reference Categories
1. Binary Model

(a) General References: [1]-[109]

(b) Component Importance: [110]-[113]
2. Multistate Model

(a) “Traditional” (€; ={0,1,...,M}): [114]-[143]

(b) “General” (Q; = {0,1,...,M;}): [144]-[166]

(c) “Non-Integerial” (€; = {zj0, Ti1, ... , Tim, }): [167]-[170]
(d) Partially-Ordered: [171]-{171]

(e) Component Relevancy: [172]-[175]

(f) Component Importance: [176]-[180]

(g) Network Reliability: [181]-[187]
3. Multistate and Binary Model Reliability Measures: [188]-[194]
4. Continuum Model: [195]-[207]
5. General Complete Lattice Model: [208]-[210]

6. Fuzzy Logic Model: [211]-[212]

164

7. Binary, Multistate, and Continuum Models Considered Together: [213]-[215]

8. Mathematica

(a) Reliability Papers and Packages: [216]-[219]
(b) Engineering Textbook Solution Sets: [220]-[221]

(¢) Reference Texts: [222]-[223]
9. Scattered Data Interpolation: [224]-[237]
10. Customer Satisfaction, Quality, and Specifications: [238]-[253]
11. Fuzzy Logic in Other Reliability Applications: [254]-[256]
12. Bayesian Approaches to Reliability: [257]-[261]

13. General Probability, Mathematics, and Computer Science: [262]-[279]

A.2 Recommended References
1. Models

(a) Binary: [21, 66, 56]
(b) Multistate: [121, 115, 151, 163, 146]

(¢) Continuum: [198, 195, 196, 197, 205, 207]
2. Measures: [192, 145, 188, 194, 189]

3. Mathematical Proofs and Derivations

(a) Moments from CDF’s: [263, page 150]

(b) Integration of Stochastic Processes: [275, page 79|

Appendix B

COHERENCE DEFINITIONS

B.1 Introduction

This appendix presents the coherence definitions which have appeared most frequently
in the reliability literature.

The primary benefit of defining coherence is to facilitate the creation and uti-
lization of theorems involving boundary points.! Interestingly enough, it is almost
exclusively the “non-decreasing” parts of these coherence definitions which facilitate
boundary point analysis rather than their “relevance” requirements; this is ironic be-
cause it is only in their definitions of “relevance” that the majority of the multistate

model coherence definitions differ from each other.

B.2 Binary Model

Birnbaum et al. [21] coined the phrase “coherent system,” and Barlow and Proschan [16]

created what is now the standard binary model coherence definition:
L o(y) =2 ¢(x) Vy = x
2. ¢(0;,%x) # ¢(1;,%x) for some x € S, Vi € C

This definition implies that repairing a component which has deteriorated cannot

cause the system to deteriorate (i.e. the structure function must be non-decreasing),

IThough there are certainly theorems unrelated to boundary points which require some sort of
coherence, such as the following: For any structure function which is EPS, Gy, or G5 coherent,
minx < ¢(x) < maxx.

166

and that each component must in at least one conceivable instance be able to influence

the system state (i.e. each component must be relevant).

B.3 Multistate Model — Traditional

With minor variations for the sake of consistency, these definitions are given as sum-
marized by Mohamed [132]. The BW Class is rephrased as suggested by Borges and
Rodrigues [116].

B.3.1 Barlow and Wu (BW Class) [115]

1. For each state vector x where ¢(x) > k > 1, there exists a state vector y =

(1,92, -, Yn) such that y; € {0,k}, i € C, y <x and ¢(y) > k

2. $(0) =0 and ¢(M) = M

3. For every component i € C' and any state vector x, ¢(0;,x) < ¢(M;, X)

B.3.2 El-Neweihi, et al. (EPS Class) [121]

1. ¢(x) is non-decreasing in x

2. ¢(j) =jfor j e

3. For every level j of every component 4, there exists a vector x such that ¢(j;, x) =

J, while ¢(k;, x) # j for all k # j

B.3.3 Butler (By Class) [178]

Originally, this definition was made only for three-state systems: M; = M =2 Vi € C.

1. ¢(x) is non-decreasing in x

167

2. $(0) =0 and ¢(M) = M

3. ¢(M;,x) # ¢(0;,x) for i € C' and any vector x

B.3.4 Butler (By Class) [117]

1. ¢(x) is non-decreasing in x

2. $(0) =0 and ¢(M) = M

3. For every component i, there exists some x such that ¢(M;,x) > ¢(0;, x)

B.3.5 Griffith [124]

According to Mohamed [132], “|Griffith’s G2| definition ... is equivalent to stating that
for any component i there exists a vector x such that ¢(0;,x) < ¢(M;,x).” Block
and Savits [144] noted that EPS coherence means every state of each component
is relevant to the same state of the system, (G; coherence means every state of each
component is relevant to the system, and (G5 coherence means some state of each

component is relevant to the system. Requirement #2 of the MMS definition implies

o(k) = k for k € Q.

Multistate Monotone System (MMS)

1. ¢(x) is non-decreasing in x

2. minx < ¢(x) < maxx

G4 Class

1. ¢(x) is an MMS

168

2. For any component i and any state j, j # 0, there exists a vector x such that

P = Vi x) < ¢(Ji, x)

Gy Class

1. ¢(x) is an MMS

2. For any component ¢ and any state j, there exists a vector x such that ¢(j;, x) #

¢(k;, x) for some state k # j

B.3.6 Natvig [135]
Ny Class

1. ¢(x) is non-decreasing in x
2. ¢(j) =jfor j e

3. For any component i and every state j, j # 0, there exists a vector x such that

Ny Class

A system belongs to the N, class if and only if there exist binary coherent structure
functions ¢;(x), j # 0, such that ¢(x) > j if and only if ¢,;(/;(x)) = 1 for any vector
x and any state j # 0, where [;(x) = (/;(z1), [;(22),...,I;(x,)) and

B.3.7 Block and Savits (BS Class) [144]

1. ¢(x) is non-decreasing in x

169

2. $(0) =0 and ¢(M) = M

B.3.8 Borges and Rodrigues (BR Class) [116]
1. ¢(x) is non-decreasing in x
2. $(0) =0 and ¢(M) = M

3. For every i, ¢ € C there exists a vector x such that ¢(0;,x) < ¢(M;, x)

B.3.9 Ebrahimi [120]
FE Class

1. ¢(x) is non-decreasing in x
2. minx < ¢(x) < maxx

3. For any component i there exists a state j and a vector x such that ¢(j;,x) = j

while ¢(k;,x) # jfor k # j,1€ C, j#0
E5 Class
1. ¢(x) is non-decreasing in x
2. minx < ¢(x) < maxx

3. For any component i, there exists a state j and a vector x such that ¢(j;, x) > j

and ¢((j — 1);,x) < j— Lfori e C, j#0

B.4 Multistate Model — General

B.4.1 Hudson and Kapur (HK Class) [151]

1. ¢(x) is non-decreasing in x

170

2.

3.

For each system state j, there exists at least one vector x such that ¢(x) = j

For all ¢« € C there exist some 57 € €);, kK € (;, and a vector x such that

¢(Ji, x) # d(ki, x)

B.4.2 Ohi and Nishida [136]

ON;

1.

ON,

ON3;

ON,

Class

¢(x) is non-decreasing in x

For each component ¢ and all system states s and t, there exist vectors (7J;, X)

and (k;, x) such that ¢(j;,x) = s and ¢(k;, x) =t

Class

¢(x) is non-decreasing in x

For each component ¢ and all system states s, there exist vectors (j;,x) and

(k;, x) such that ¢(j;,x) = s — 1 and ¢(k;, x) = s

Class

. ¢(x) is non-decreasing in x

For each component ¢ and all system states s, there exist vectors (j;,x) and

(ki, x) such that ¢(j;,x) # s and ¢(k;, x) = s

Class

¢(x) is non-decreasing in x

For each component ¢ and all system states s, there exist vectors (j;,x) and

(k;, x) such that ¢(j;,x) < s— 1 and ¢(k;,x) > s

171

ON5 Class

1. ¢(x) is non-decreasing in x

2. For each component i there exist vectors (j;, x) and (k;, x) such that ¢(j;, x) #

615(]%, X)

B.4.8 Boedigheimer [21/]

If the structure function is specified by lower and upper boundary points, it might
be better to define coherence in terms of these points; this is what Boedigheimer’s

General Multistate Coherent System (GMC'S) coherence definition accomplishes:

1. ¢(x) is non-decreasing in x

2. Sy and Sy, are not empty.

3. For every component i, there exists a lower boundary point to level k such that
x; # 0 for some k # 0 or an upper boundary point to level k such that x; # M;
for some k # M.

B.5 Multistate Model Coherence Summaries

The multistate model literature has clearly devoted considerable attention to defining
various types of coherence: see Table B.1 for a summary of those definitions which
have been presented in this appendix.

Some coherence classes are subsets of other classes. The following relationships
were given in [132]:
BW C EPSN NN BR
EPSUN;, C Ny C Gy CGyCBS

172

Table B.1: Multistate Model Coherence Definitions

Researchers Model Year Definition
Barlow and Wu Traditional 1978 BW
El-Neweihi, et al. Traditional 1978 FEPS
Butler Traditional 1979 B,
Butler Traditional 1982 B,
Griffith Traditional 1980 &G,
Griffith Traditional 1980 Gy
Natvig Traditional 1982 N
Natvig Traditional 1982 N,
Block and Savits Traditional 1982 BS
Borges and Rodrigues Traditional 1983 BR
Ebrahimi Traditional 1984 F;
Ebrahimi Traditional 1984 Fj
Hudson and Kapur General 1983 HK
Ohi and Nishida General 1984 ON;
Ohi and Nishida General 1984 ON;,
Ohi and Nishida General 1984 ONj;
Ohi and Nishida General 1984 ON,
Ohi and Nishida General 1984 ONj;
Boedigheimer General 1992 GMCS

These relationships® were found by Ebrahimi [120]:
BW C EPSCE, CE,
N1 CGiNEy, CGy

2For the sake of these relations, HK class is considered only for a “traditional” model with the
same number of states for each component as for the system.

173

EyCHK CBS
Gy CHK

B.6 Continuum Model

B.6.1 Baater [196]

This definition, which its author refers to as “weak coherence,” is similar to Griffith’s

G5 Class.
1. ¢(x) is non-decreasing in x
2. supyeglo(li, x) — ¢(0;,x)] > 0 for each i € C'

B.6.2 Boedigheimer [214]

Like his definition for the general multistate case, Boedigheimer’s continuum model

coherence definition is given in terms of lower and upper boundary points.
1. ¢(x) is non-decreasing in x
2. Sy and S are not empty

3. For every component ¢, there exists an x € Lj such that z; # 0 for some k # 0

or there exists an x € U}, such that z; # 1 for some £k # 1

Appendix C

SPECIAL STRUCTURE DEFINITIONS

C.1 Introduction

For every model type, definitions for “parallel,” “series,” and “k-out-of-n” systems
have been proposed in the literature. Philosophically, the essential characteristic of
a parallel structure is that the model’s best component determines the state of the
system, the essential characteristic of a series structure is that the model’s nth best
(i.e. worst) component determines the state of the system, and the essential charac-
teristic of a k-out-of-n structure is that the model’s kth best component determines
the state of the system.! For all k-out-of-n structure definitions, a series system is an

n-out-of-n system and a parallel system is a 1-out-of-n system.

The traditional method of illustrating series and parallel arrangements is shown

in Figures C.1 and C.2.

Figure C.1: Series System

'Thus, a binary series system is one where the system fails when any component fails, and a
binary parallel system is one where the system fails only when all components fail.

175

Figure C.2: Parallel System

C.2 Definitions Based on Structures

These are by far the most commonly used definitions. The following are applicable
and reasonable for any model where Q = Q; Vi € '; Birnbaum et al. [21] first applied
these structures to the binary model, and El-Neweihi et al. [121] and Barlow and
Wu [115] first applied these structures to the traditional multistate model. Using
standard notation, x(; is the sth order statistic of the set of n components: ;) <
T2) < .S T

Series?: ¢(x) = minx

Parallel®: ¢(x) = maxx

k-out-of-n: ¢(x) = x(n_r41)

C.3 Definitions Based on Equivalence Classes

These definitions were created for H K-coherent general multistate models (in which

it is possible that Q # €2;) by Hudson and Kapur [151], though they have meaning

2For the binary case, minx = H?:l T; = X1Tg - Tp.

3For the binary case, maxx = [[}"jz; =1 — (1 —z1)(1 —z2)--- (1 — z,,).

176

for all model types. In contrast to the definitions in the previous section, there are
many possible structure functions meeting these definitions which would be considered
series, parallel, or k-out-of-n.

Series

L. So={x|x=(0;,x)},xe€S,ieC

2. Sy =M
Parallel
1. 5=0

2. Sy ={x|x=((M)x)},xe8,ie€C
k-out-of-n
1. Sp ={x|n—k+1 or more components are in their minimal states 0}, x € S

2. Sy = {x | k or more components are in their maximal states M}, x € S

C.4 Definitions Based on Boundary Points

These definitions, introduced by Boedigheimer [214], are also intended for use in
situations where it is possible that €2 # ;. They have additional value when the
system structure is specified through boundary points, and are valid for all model
types:

Series

¢ has one lower boundary point to level j, j # 0, and n upper boundary points to
level j, 7 # M.

Parallel

177

¢ has n lower boundary points to level j, j # 0, and one upper boundary point to
level j, 7 # M.

k-out-of-n

n

¢ has (Z) lower boundary points to level j, 7 # 0, and (n_k "

) upper boundary
points to level j, j # M.

C.5 Definitions Based on Rounded Structure Function Values

Although the “Equivalence Classes” and “Boundary Points” definitions detailed above
do allow for the extension of “parallel” and “series” concepts to the general multistate
model, they lose a considerable degree of their original, intuitive character in the
process.

A simpler approach would be to retain the definitions for the special structures
given in Section C.2, but to require that any given value which they predict be rounded
either up, down, or “to the nearest” so that only valid system states may result
from any particular combination of the component states. This approach might be

especially valuable for non-integerial multistate models with M = M; Vi € C.

Appendix D

PROBABILITY CALCULATION AND BOUNDS

D.1 Introduction

In this appendix, we review probability calculation and bounding techniques which
have been well-documented in the reliability literature. The goal of these techniques is
to calculate or approximate probabilities or reliability measures for the system based
on the same information about the components.

Many of these bounds are stated in terms of)5 values. () values can sometimes
be used to compare systems directly; one system will be superior to another, all
other things being equal, if every @ (k # 0) for that system is greater than for
the other. It is worth noting that, for the traditional or general multistate model,

one may calculate the expected state of the system based on these values as follows:

Elp(X)] =X, Q.

D.1.1 Associated Components

Several expressions are given in this appendix for probability bounds on systems
whose components are “associated.” Associated components are a special category of

non-independent components: X, Xo,...,X,, are associated if
COV[g(X] y XQ, Ce 7Xn>7]’L(X] s XQ, e ,Xn>] Z 0 (Dl)

for all increasing functions g and h. An example of association is a system where
several ropes suspend a single object so a failure of one rope increases the strain on

the others.

179

The following statements are true for associated components X, Xo, ..., X,;:
P[Xy > a1, Xy > @, ., X > an] > | [PIXG >] (D.2)
i=1
PIXy < a1, Xy < wg, Xy <) 2 [[PIXG < 2] (D.3)

1

<.
Il

For binary associated components these statements have the following equivalent

forms:!

P[[[x:=1=> f[P[XZ- = 1] (D.4)

P[[[Xxi=1]< ﬁp[xi = 1] (D.5)

D.2 Exact Calculation

These methods will find precise values for state probabilities of a system based on the
state probabilities (or distributions) of its components. Section D.2.1 is applicable to

all model types, but Section D.2.2 is applicable only to discrete models.

D.2.1 Direct Enumeration

For discrete models one may find system state probabilities by calculating P[¢(X) =
s] = > es. PIX = x] (in cases where the components are independent P[X = x| =
P[X, = ©1|P[Xy = x| --- P[X,, = x,], which may simplify computation). For con-
tinuum systems, equation (3.3) may be used; when the distributions are specified (or
specifiable) by PDF’s, dF;[z;,t] may be replaced by f;|z;, t|dx;, and when the com-
ponents are not independent [[" | dF;[z;,t] should be replaced dF[z1, s, ..., x,; .

The advantage in having independent components for this last calculation is that

'Note that for a binary model, Q; = P[¢p(X) = 1] = E[¢(X)] and Q;; = P[X; = 1] = E[X;].

180

the n-dimensional integral will often break up into the product of n one-dimensional

integrals, which can then more easily be solved by numerical integration.

This “brute force” method produces proper results, even for non-coherent systems,
but can be computationally intensive; if half of the state vectors in a binary model,
for example, lead to the system being in its maximal state, one would have to sum

2"=1 probabilities and check all but one of the rest.?

D.2.2 Inclusion-Ezclusion

These methods produce exact results based on either the lower boundary points or
the upper boundary points for a coherent general multistate model [16]. Depending
on the number of components and the number of boundary points, this method may
or may not be superior to enumeration. The basic theorem used in this method is
Feller’s Inclusion-Exclusion Principle; it is valid for any v events Fy, F»,..., FE, and

may be stated as follows:

P E) =S Pl - S PEBL+ Y PIEEE]

j=1 j<k j<k<l

— Y PIEEEE,|+--+ (-1)""'P[E By -+ E,] (D.6)

J<k<l<m

For a model with a finite number of lower boundary points to level k, let Ej; be
the event that x > Lj;; we may then use (D.6) to compute the right hand side of the
following expression:

Q=P . kA0 (D.7)

Tk
U B
Jj=1

2Although at least one does not need to separately calculate the boundary points if they were
not given.

181

D.3 Bounds

The bounds in this section all use lower and/or upper boundary points. Because
this dissertation’s emphasis is on techniques which have practical rather than merely
theoretical value, and because of the difficulties with boundary points for continuum
models which have been described in previous chapters, these bounds will be presented
for discrete cases only (with the exception of (D.9), which requires only one boundary
point to the level of interest). Theoretical extensions of these techniques to continuum
models are documented in [214].

It should be noted that in the coherent binary case®, because overall system per-
formance will be worst with a pure series arrangement of the components and best
with a pure parallel arrangement of the components, the following bounds are always

valid [43]:
HQik <@k < HQik (D.8)
i1 i=1

It is assumed throughout this section that, since Qo = 1, 0 < £ < M for bounds
on Q.

D.8.1 Trwial Bounds

Trivial bounds [214] are based on a single lower boundary point y € L, and are still

valid for associated components:

n

HQi,y,- < Qk <1- H(l - inyi) (Dg)
i=1

i=1
D.3.2 Path/Cut Bounds
Path/cut bounds [144] find the upper bound from the lower boundary points and the

lower bound from the upper boundary points. They are not in every case narrower

than trivial bounds. Notation used below is for the general multistate model.

3and in some non-binary cases, depending on what coherence definition is followed

182

Independent Components:
H H Qij+1 < @k < H H Qi j (D.10)
x€Uk—1 (4,§)€Ug—1(x) x€ELy, (4,5)E€Lk (x)

Associated Components:

H P U {(Xi>j}| <@, <

x€U,_1 (4,7)€Uk—1(x)

[me| () Xxi>i-13| 1Y

x€Lg (i7j)€Lk(X)
D.3.3 Min/Max Bounds

Min/max bounds [144] find the lower bound from the lower boundary points and
the upper bound from the upper boundary points. They are in every case narrower
than (or at least equal to, in degenerate cases) trivial bounds, but are not necessarily
narrower than path/cut bounds. Notation used below is for the general multistate
model.

Non-Associated Components:

max{ | H Qij} < Q< min { - IT @} (D.12)
(17])€Lk(x) (Z7j)€Uk—1(X)

Associated Components:

max P| ﬂ {Xi>j—1}<Qr <

xcl
el

min P[] {X;>j} (D.13)

el
D.3.4 Combination Bounds

Since, according to Boedigheimer [214], “Upper boundary points generally provide a

tighter bound for mutually independent components with large probabilities in the

183

higher states, and the lower boundary points generally provide a tighter bound for
mutually independent components with large probabilities in the lower states,” it is
logical that one could combine the bounds produced by the path/cut and min/max
methods to obtain better results. Of the bounds calculated by path/cut and min/max
methods, one would choose the larger of the two lower bounds and the smaller of the

two upper bounds to form the combined bounds.

D.3.5 Inclusion/FExclusion Bounds

For inclusion/exclusion bounds [135], one chooses a calculation depth based on com-
peting needs for speed and accuracy. These bounds are not constrained to lie between
0 and 1, and furthermore do not always steadily improve as one adds more terms.
The second order, fourth order, jth order (j even), and exact (rith order) terms are

given below; each ¥J; is the ith term on the right-hand side of (D.6).

2nd Order: >y — Yo < Qr < X4
4th Order: Y1 — Yo+ 23 — 2y < Qp < X1 — Yo+ X3

J j—
7th Order: Z(—l)”lzi < Qi < (_1)i+lzi
1

—_

i=1 i

Exact: Qp =X — X+ X3 — -+ (—=1)**'y%

Tk

Appendix E

MISCELLANEOUS THEOREMS AND DEFINITIONS

E.1 Component Redundancy

The following were proved for binary coherent systems in [43], and are also valid for
any other model type with a non-decreasing structure function. The following new
notation is used in this section:

a Vb= max{a,b}

XVy = (v Vy, 22 Vya,. . Ty V)

aAb=min{a,b}

X/\YE(xl/\yth/\wau,lEn/\yn)

E.1.1 Parallel

P(xVy) > d(x)Vo(y) (E.1)

In other words, if two copies of each component are available, it is better to build one
structure where each component is in parallel with its twin rather than to build two
identical structures which are themselves in parallel. This implies that redundancy is
more effective at the component level than at the system level. Equality holds in the

above expression when the structure function ¢(x) was parallel to begin with.

E.1.2 Series

P(xNy) < d(x)Ao(y) (E.2)

185

In other words, if two copies of each component are available, it is better to build two
identical structures which are themselves in series rather than to build one structure
where each component is in series with its twin. Equality holds in the above expression

when the structure function ¢(x) was series to begin with.

E.2 Component Importance

Generally, it is considered prudent to concentrate real-life improvement efforts on the
most important components of a system. Measures such as these, if calculable, may

help guide engineering decisions.

E.2.1 Structural

Intuitively, one component might be considered more important than another if there
is a greater proportion of state vectors in which it may affect the state of the system
by being repaired or decaying. A measure for this “structural importance” can be
calculated based solely on knowledge of the system’s structure function, without any
knowledge of the components’ stochastic properties.
Boedigheimer [214] gave a general multistate equivalent of this originally binary
expression as follows:
, 1
Iy(1) = .04 1) {x|x,-Z=Mi}N(X) (E.3)

where

0, otherwise

Boedigheimer also extended (E.3) to the continuum case:'

L,() / NG (E.5)

! Please note that a component can actually be relevant for a continuum model, but irrelevant for
a binary model with the same structure function.

186

E.2.2 Performance

Performance Importance (referred to as “Reliability Importance” in the binary model
literature) is analogous to Structural Importance, but takes into account the com-
ponents’ stochastic properties. The Performance Importance of general multistate

component 7 at state j, as defined by El-Neweihi et al. [121], is as follows:

Ir(i,) = Elo(ji, X)] = E[¢(0;, X)], 5 # 0 (E.6)

For a parallel binary system, the component with the highest reliability will be
most important; for a series binary system, the component with the lowest reliability

will be the most important.

Appendix F

DYNAMIC PROPERTIES

This appendix summarizes basic results on the dynamic properties of reliability
models. Dynamic properties concern the relationship between the lifetime distribu-
tions for components and the lifetime distribution for the system. It will be assumed
throughout this appendix that the components are mutually independent and non-
repairable, that systems and components are in their best states at ¢ = 0, and that

the system’s structure function is coherent.

F.1 Binary Model

F.1.1 Notation

Let T be the random variable for the lifetime of the system' (the time at which the
system state reverts to 0), and let f(¢) be the PDF for T. The following standard

notation may be used (subscripts may be added when these quantities are computed

"Note that f(t) and F(t), in this section, are the PDF and CDF for the time to failure (in a
binary sense) rather than for the system state.

188

for components):

Fy=P[T<t]= | f(r)dr (F.1)
R()=P[T >t]=1- F(1) (F.2)
nty = 20 (F.3)

F.1.2 Lifetime Distribution Classes

Please see Table F.1 for a summary of lifetime distribution class definitions which

have appeared in the binary model literature.

F.1.3 Lifetime Distribution Closure

Barlow and Proschan [16] examined the issue of lifetime distribution closure — when
operations on components of a certain class always result in a lifetime distribution
of that same class; the operations they examined were forming coherent systems,
summing lifetime distributions (convolutions), and forming linear combinations of
lifetime distributions. Their results are summarized in Table F.2; we can conclude
from this table, for example, that a coherent system whose components are all [FRA

will be IFRA, but a coherent system whose components are all IFR may or may not

be IFR.

F.2 Bounding System Lifetime Distributions

If one can assume all the unknown component lifetime distributions are IFR with
known means p; (where i € ('), one can obtain useful bounds on system proba-

bilities by realizing the exponential distribution is the limiting distribution for the

189

Table F.1: Binary Model Lifetime Distribution Classes

Class Full Name Characteristic
IFR Increasing Failure Rate h(t) is a non-decreasing function
IFRA | Increasing Failure Rate on H(t)/t is a non-decreasing function
the Average
NBU New Better than Used R(t+z) < R(t)R(z) fort >0, 2 >0
NBUE | New Better than Used in [R(7)dr < uR(t)
Expectation
DFR Decreasing Failure Rate h(t) is a nonincreasing function
DFRA | Decreasing Failure Rate on H(t)/t is a nonincreasing function
the Average
NWU | New Worse than Used R(t+z) > R(t)R(x) fort >0, 2 >0
NWUE | New Worse than Used in [~ R(7)dr > pR(t)

Expectation

IFR class [16]; a lower bound on R(t), valid for ¢ < min{py, pt2, ..., ftn}, can then be

shown to be ¢p(e~/m1 e7t/rz

model [214].

F.3 Multistate Model

,e~t/1n) A similar result is available for the multistate

F.3.1 Lifetime Distribution Classes and Closure

IFRA

Ross [170] defined IFRA such that the length of time for the component or system to

reach or go below each state j is IFRA (as defined for the binary model). He proved

190

Table F.2: Binary Model Lifetime Distribution Closure

Lifetime Dist. | Coherent Systems Convolutions Linear Combs.
IFR Open Closed Open

I[FRA Closed Closed Open

NBU Closed Closed Open

NBUE Open Closed Open

DFR Open Open Closed

DFRA Open Open Closed

NWU Open Open Open

NWUE Open Open Undetermined

closure with regard to the formation of coherent systems for IFRA components under
this expanded definition. An equivalent result was proved for the general multistate

model by Hudson [150].

NBU

El-Neweihi et al. [121] defined NBU such that the length of time for the component or
system to reach or go below each state j is NBU (as defined for the binary model). He
proved closure with regard to the formation of coherent systems for NBU components
under this expanded definition. An equivalent result was proved for the general

multistate model by Hudson [150].

F.4 Continuum Model

Baxter [195] proved (using definitions of IFRA and NBU identical to those given
in Section F.3.1) closure with regard to the formation of coherent systems for these

continuum IFRA and NBU classes.

Appendix G

LAPLACE TRANSFORM REFERENCE

Definition:

L] = f(2) = /0 Tetiydt, (1) defined on [0,00)

Properties:

Llafi(t) + B0) = aLLf (0] + B0
L1/~ a)] = Ll (1)
Ll f (1)) = /(= - a)
£U(0) = =L1 (1) - 5 (0)

e[st dul = £l

] / f1(t =) folw) du) = L1f (1)) - £1fa0)]
lim zf*(z) = lim f(t)

2—00 t—0

lim = *(2) = lim /(1

see Table G.1 for several common Laplace transforms.

192

Table G.1: Table of Laplace Transforms

S LLFO) | @) L))

1 1/z A I(a+1)/20T
t 1/22 et 1/(z—a)

t? 2!/23 et nl/(z — o)™
" nl/znt

Appendix H

CONTINUOUS DISTRIBUTION REFERENCE

The following represents the definitions and notation for various PDF’s, as used

T(@)l(b)

both by Mathematica and by this dissertation. Note that B(a,b) = Fatl)

DISTRIBUTION f(1)

(1 —t)atgpt
Betalp, q —_
bl B(p,q)
1
hy|a, b
Cauchyla, b T =)
217n/267t2/2tn71
hi
Chiln] T(n/2)
27n/267t/2tn/271
ChiS
iSquare[n] T0/2)
Exponential[\] e\
ExtremeValue[a,] exp({(a = t)/g)—exp((a—t)/ﬂ))
n1/2, n2/2n, /21 —(n14n2)/2
, M g2t A (ng + ngt)
F t 1 2
Ratio[nq, no] B /2 m)2)
eft/ﬁtozflﬁfoz
Gamma|a,] T
9e—(t26%)/7
HalfNormal[0] «“ 77
7r
_lt=p]
Laplace|u, 3] ¢ 2
_t-

e” B
t—p 2
(1 +e_T) 16}
e~ (In(t)—p)?/(20?)
\2rto

Logistic|u, 5]

LogNormal[u, o]

194

(=) (20%)
Normal[u, o] ——

2mo
o 12/(20%)
Rayleigh[o] —
o
(n)(n-‘r])/Q
24+n
StudentT|n] \/7_Z]J3r(n/2 172)
1
Uniform|[min, max| —_—
max — min

Weibullje, 3] e~ W% e-lqp

When necessary, we may take advantage of the following relations:

Gammaln/2, 2] = ChiSquare|[n|
Gamma([l, 1/A] = Exponential[A]
Weibull[1, 1/A] = Exponential[\]
Weibull[1, 8] = Gammall, f3]
Weibull[2, v/20] = Rayleigh[o]

Let us assume that the customer specifies the mode m > 0 of a U(t) lifetime

weighting function. The customer’s options in terms of the PDF’s given at the be-

195

ginning of this appendix are:

Chi[m? + 1]

ChiSquare[m + 2]

1—2/ny 1\ "
n _— =
"\ 2m 2

Gamma la, L], a>1
a—1

LogNormal [,LL, \/m}

Rayleigh[m]

FRatio , m>2,m<1

Uniform[min < m, max > m|

m

((a=1)/a)t/e

Weibull {oz,] , a>1

Rayleigh and LogNormal can never have a mode of 0, while Exponential and
HalfNormal must always have a mode of 0. Other PDF’s which can be valuable for
m = 0 cases are FRatio with n; < 2, ChiSquare with n; < 2, Weibull with a < 1,

Gamma with o < 1, Chi with n < 1, and Uniform with min = 0.

Two different types of truncation are used in this dissertation for continuous distri-

butions in continuum model examples. A “hard-truncated” continuous distribution,

)

abbreviated in the text as “h-truncated” or “ht-[DistributionName|,” is the following

function of the original CDF F[x]:

1, x>1
Fhle] = § Flz], 0<z<1 (H.1)
0, x <0

A “soft-truncated” continuous distribution, abbreviated in the text as “s-truncated”

196

or “st-[DistributionName]|,” is the following function of the original CDF F|x]:

(
1, z>1
— { Flz]-F[0]
Fiyz] FiFoe 0<e<1 (H.2)
0, xz <0
\

/

falr] =4 AL o<z <1 (H.3)

Appendix I

SOFTWARE DOCUMENTATION AND TUTORIALS

Original Mathematica [222] software packages which can perform all the calcula-
tions described in this dissertation are available on the accompanying disk and printed
in Appendix J. This software is unique in that it both allows for non-binary reliability
analyses and can often return answers in symbolic as well as numerical form. This
appendix gives the user a basic understanding of these new packages’ capabilities and
illustrates how they were used to generate the graphs, calculations, etc. which appear
earlier in this dissertation.

There are definite precedents for using Mathematica to perform advanced relia-
bility calculations; some of the best efforts along these lines are documented in [218,
217, 219].

In the segment of this appendix titled “Mixed Model Tutorial,” the “attached

sheet” is in fact page 115 of this dissertation, which contains Figure 8.15.

Introductionto RelPack 2.0

m Purposeand Background

The purposeof this sectionisto introducethe user to the main featuresand syntax for RelPack 2.0.
RelPack s collectionof Mathematica packages, whichwhentaken together providea variety of
functionsfor performingreliability model -buildingand analysiswith binary, multistate, and
continuousreliability models.

Itis necessaryto haveacertainlevel of knowledgeconcerningMathematica to makeeffectiveuse of
RelPack. RelPack’ goal isto provideacollectionof functionsthat can be used, combined,and
extendedfor the purposesof reliability analyses. However,the underlyingsyntax used for all these
functionsisthat of the Mathematica |anguage, and without some knowledgeof it this environment
cannot be utilizedto itsfullest extent. For moreinformationon Mathematica, the user is referredto the
standard definingtext of the language[The MathematicaBook by StephenWolfram (1996)] and the

Mathematjra weh cite Iananar winlfram cnml

Rel Pack waswritten as an essential e ement of the author’ sdoctoral dissertationwork.

m PackageBasics

m | oadingthe RelPack Environment

After the Mathematica interpreter has been invoked, all the functionality of Rel Pack may beloaded by
using the following command:

Needs["LoadReliability"]

Alternatively,one may load separategroupsof functions(called"Packages")individuallyinstead of
loadingthe entire set of them. Loading packagesindividuallymay be necessaryin caseswhere
memoryis scarce.

The DeterministicAnalysis
Package

m General Comments and Definitions

In general, the functionsin this packageare designedto assi st with multistate, rather than continuum
systems. Thevector comparisonoperatorsL essOrEqual Q,L essQ, GreaterOrEqual Q,and GreaterQare
the only functionswhichwill havevaluefor non-discretemodels. Theemphasisin thispackageison
the manipulationof minimal pathsand cuts, and on coherenceverification.

phi $Max[x_] := Max[x]
m Function Documentation

m LessOrEqualQ[x,y]

Thisfunctionwill return"True" if the vector x islessthan or equal to the vectory, "False" otherwise.

LessOrEqual 4 {0,0,1},{1, 1, 2}]

True

= LessQ[x,y]

Thisfunctionwill return"True" if the vector x islessthanthe vectory, "False" otherwise.

Less {1,1,1},{1,1,1}]

Fal se

= Greater OrEqualQ[x,y]

Thisfunctionwill return"True" if the vector x is greater than or equal to the vectory, "False”
otherwise.

GeaterOEqual g {1,1,1},{1,1,1}]

True

= Greater Q[x,y]
Thisfunctionwill return"True" if the vector X is greater than the vector y, "False" otherwise.

Geater{1,1,2},{1,1,1}]

True

= Vector Space[p]

Thisfunctionwill returnthelist of all possiblecomponentstate vectors, giventhelist of possible
statesfor each vector, p.

Vect or Space[{{0, 1,2},{0,1,2,3},{0, 1}}]

{{0, o, 03}, {0, O, 13}, {0, 1, O}, {O, 1, 13}, {O, 2, O}, {O, 2, 1},
{o, 3, 0}, {0, 38, 1}, {1, O, O}, {1, O, 13}, {1, 1, O}, {1, 1, 1},
{1, 2, 0}, {1, 2, 1}, {1, 3, 0}, {1, 8, 1}, {2, 0, O}, {2, O, 1},
{2, 1, 0}, {2, 1, 1}, {2, 2, 0}, {2, 2, 1}, {2, 3, 0}, {2, 3, 1}}

= NonDecreasingQ[p,phi]

Thisfunctionwill return"True" if the givenstructurefunctionis non-decreasingon the space of
possiblecomponent state vectors, " Fal se" otherwise.

NonDecr easi ng@ {{0, 1, 2},{0, 1, 2, 3}, {0, 1}}, phi $Max]

True

» ProperLimitsQ[p,phi,fphi]

Thisfunctionwill return"True" if the given structurefunction mapsthe maximal and minimal
component state vectorsinto the maximal and minimal system states, respectively. "False" is
returned otherwise.

ProperLimtsQ{{0,1,2},{0,1,2,3},{0,1}},
phi $Max, {0, 1, 2, 3}]

True

= ReeventComponentsQ[p,phi]

Thisfunctionwill return"True" if every componentisrelevent,"False" otherwise. A component
is deemedreleventif thereis somecomponent state vector for which somechangein this
componentwill causea changein the systemstate.

Rel event ConponentsQ {{0, 1, 2},{0,1, 2, 3},{0, 1}}, phi $Max]

True

= CoherentQ[p,phi,fphi]

Thisfunctionwill return"True" if the givenmultistatesystemis coherent, false otherwise. A
systemis deemed coherentif it passesthe ReleventComponentsQ,ProperLimitsQ,and
NonDecreasingQtests.

Coherent d {{0, 1, 2},{0, 1, 2,3},{0, 1} }, phi $Max, {0, 1, 2, 3}]

True

m L BPFromStructur€p,phi,fphi]

Thisfunctionwill returnthelower boundary pointsto each level, under the assumptionthat the
systemis coherent. For each boundary point, thefirst part of thelist givesthe componentvector
for that boundary point, the second givesthe system state that vector is a boundary point for, the
third defineswhetherthat is an upper or lower boundary point, and the last will indicatewhether
that boundary pointis"Rea" or "Virtua". A boundary point istermedvirtual if the systemstate
associatedwith that component state vector is not equal to the system state that componentis a
boundary point for. Pleasenotethat the Virtual boundary pointsare necessaryto retain, if one
wishesto reconstructthe original structurefunctionaccurately based only on the boundary points.
Comparethe two examplesbel ow for clarificationof thispoint. Thesituationwith
UBPFromStructureis exactly analagous.

| bps=LBPFronstructure[{{0, 1, 2}, {0, 1, 2, 3}, {0, 1} },
phi $Max, {0, 1, 2, 3}]

{{{0, 0, 1}, 1, Lower, Real }, {{O, 1, 0}, 1, Lower, Real },
{{1, 0, 0}, 1, Lower, Real }, {{0O, 2, 0}, 2, Lower, Real },
{{2, 0, 0}, 2, Lower, Real }, {{0O, 3, 0}, 3, Lower, Real }}

LBPFronst ructure[{{0, 2}, {0, 2,3},{0, 2}},
phi $Max, {0, 1, 2, 3}]

{{{0, O, 2}, 1, Lower, Virtual }, {{O0, 2, 0}, 1, Lower, Virtual },
{{2, 0, 0}, 1, Lower, Virtual }, {{0, 0, 2}, 2, Lower, Real },
{{0, 2, 0}, 2, Lower, Real }, {{2, 0, 0}, 2, Lower, Real },

{{0, 3, 0}, 3, Lower, Real }}

m UBPFromStructur € p,phi,fphi]

Thisfunctionwill returnthe upper boundary pointsto each level, under the assumptionthat the
systemis coherent. See LBPFromStructurefor further discussion.

ubps=UBPFronttructure[{{O0, 1, 2},{0, 1, 2, 3}, {0, 1} },
phi $Max, {0, 1, 2, 3}]

{{{0, 0, 0}, O, Upper, Real }, {{1, 1, 1}, 1, Upper, Real },
{{2, 2, 1}, 2, Upper, Real }}

UBPFronSt ructure[{{0, 1,3},{0,1,3},{0, 3}},
phi $Max, {0, 1, 2, 3}]

{{{0, 0, 0}, O, Upper, Real }, {{1, 1, 0}, 1, Upper, Real },
{{1, 1, 0}, 2, Upper, Virtual }}

m CUVUpperBound[n,m]

Thisfunctionwill returnthe Xueand Y ang [1995] upper bound on the number of Critical Upper
Vectorsfor eachleve . It isassumedthat the systemand each and each of the n componentshave
the samenumber of possiblestates: m+1.

CUVUpper Bound] 5, 3]

155

m Boedighemer SeriesQ[lbps,ubps,fphi]

Thisfunctionwill return Trueif the system (based on the upper and lower boundary points) meets
Boedigheimer’ §1992] definitionof aseriessystem. We use below the lower and upper boundary
pointsthat were obtainedin the examplesfor L BPFromStructureand UBPFromStructure. This
definitionis met if thereis one lower boundary point and n upper boundary pointsto each level.

Boedi ghei ner Seri es{ | bps, ubps, {0, 1, 2, 3}]

Fal se

m Boedighemer ParallelQ[Ibps,ubps,fphi]

Thisfunctionwill return Trueif the system (based on the upper and lower boundary points) meets
Boedigheimer’ §1992] definitionof aparallel system. We use bel ow the lower and upper
boundary pointsthat were abtainedin the examplesfor L BPFromStructureand
UBPFromStructure. Thisdefinitionismet if thereis one upper boundary point and n lower
boundary pointsto each level.

Boedi ghei mer Paral | el | bps, ubps, {0, 1, 2, 3}]

Fal se

» L BPFromPathgpaths,n]

Thisfunctionwill returnthefull lower boundary point form (asis normally returned by functions
such as LBPFromStructure)for alist of listsof components,whereeach list of components
identifiesaminimal path for abinary systemwith n components.

| bps2=LBPFronPat hs[{{1, 2, 3},{2,4},{5}}, 6]

{{{1, 1, 1, 0, 0, O}, 1, Lower, Real },
{{0, 1, 0, 1, 0, 0}, 1, Lower, Real },
{{o0, 0, 0, 0, 1, 0}, 1, Lower, Real }}

= UBPFromCutgcuts,n]

Thisfunctionwill returnthefull upper boundary point form (asis normally returned by functions
such as UBPFromStructure)for alist of lists of components,whereeach list of components
identifiesaminimal cut for abinary systemwith n components.

ubps2=UBPFrontCut s[{{1, 2, 3}, {2, 4}, {5}}, 6]

{{{0, 0, 0, 1, 1, 1}, O, Upper, Real },
{{1, 0, 1, 0, 1, 1}, 0, Upper, Real },
{{1, 1, 1, 1, 0, 1}, 0, Upper, Real }}

m PathsFromLBP[lbps]

Thisfunctionwill returnthelist of minimal pathsfor a binary system, based on the full lower
boundary point form (asis normally returnedby functionssuch as L BPFromStructure)for that
system..

Pat hsFr onlBP[| bps2]

{{1, 2, 3}, {2, 4}, {5}}

m CutsFromUBP[ubps]

Thisfunctionwill returnthelist of minimal cutsfor abinary system, based on the full upper
boundary point form (asis normally returned by functionssuch as UBPFromStructure)for that
system..

Cut sFr omUBP[ubps2]

{{1, 2, 3}, {2, 4}, {5}}

» Boedighemer ReleventComponentsQ[Ibps,ubps,p]

Thisfunctionwill return"True" if every componentmeetsBoedigheimer’ §1992] definitionof
rel evency, based on the lower boundary pointslbps, the upper boundary points ubps, and the
component state spacelist p.

Boedi ghei mer Rel event Conponent sq | bps, ubps,
{{0,1,2},{0,1,2,3},{0, 1}}]

True

= Structurallmportancegp,phi]

Thisfunctionwill returnthe structural importancesof every componentof the system, based on
the component state spacelist p and the structurefunctionphi.

Structural I nportances[{{0,1,2},{0,1,2},{0, 1}}, phi $Max]

(z 5 5

©| =

= UBPToL BP[ubps,p,fphi]

Thisfunctionwill returnthelower boundary point list, based on the upper boundary point list, the
componentstate spacelist p, and the systemstate spacefphi. No attemptis madeto discern
whether any given boundary pointis"Real" or "Virtua". However,it should be noted that
nowherein this packagedoes any functionactually usethis"Real" vs. "Virtua" information.

UBPToLBP[ubps, {{0, 1, 2},{0,1, 2,3},{0,1}},{0, 1, 2, 3}]

{{{0, 0, 1}, 1, Lower, Indet }, {{O, 1, 0}, 1, Lower, Indet },
{{1, 0, 0}, 1, Lower, Indet }, {{0, 2, 0}, 2, Lower, |ndet },
{{2, 0, 0}, 2, Lower, Indet }, {{0, 3, 0}, 3, Lower, |ndet }}

= LBPToUBP[lbps,p,fphi]

Thisfunctionwill returnthe upper boundary point list, based on the lower boundary point list, the
componentstate spacelist p, and the systemstate spacefphi. No attemptis madeto discern
whether any given boundary pointis"Real" or "Virtua". However,it should be noted that
nowherein this packagedoes any functionactually use this"Real" vs. "Virtua" information,and
that the function BPTypeFindis capabal eof performingthis calculationif it is needed.

LBPToUBP[| bps, {{0, 1, 2},{0,1, 2,3},{0,1}},{0,1, 2, 3}]

{{{0, 0, 0}, O, Upper, Indet}, {{1, 1, 1}, 1, Upper, Indet },
{{2, 2, 1}, 2, Upper, Indet }}

m CutsToPathgcuts,n]

Thisfunctionwill returnthelist of minimal paths, based on thelist of minimal cuts, for abinary
systemwith n components.

Cut sToPat hs[{{1, 2, 3, 4}}, 4]

{{4}, {3} {2}, {11}

m PathsToCutgpaths,n]

Thisfunctionwill returnthelist of minimal cuts, based on thelist of minimal paths, for abinary
systemwith n components.

Cut sToPat hs[{{1},{2},{3},{4}}, 4]

{{1, 2, 3, 4}}

m SystemStateFromL BP[Ibps,fphi,x]

Thisfunctionwill returnthe state of the system associatedwith a particular component state vector
X, based not on knowledgeof the structurefunctionphi but rather on knowledgeof the lower
boundary point list Ibps and the system state spacefphi.

Syst entt at eFr onLBP[| bps, {0, 1, 2, 3},{0, 1, 0}]

1

s SystemStateFromUBP[ubps,fphi,x]

Thisfunctionwill returnthe state of the systemassociatedwith a particular component state vector
X, based not on knowledgeof the structurefunctionphi but rather on knowledgeof the upper
boundary point list ubps and the system state spacefphi.

Syst entt at eFr omUBP[ubps, {0, 1, 2, 3},{0, 1, 0}]

1

= BPClean[lbpsor ubps,stringl,string2]

Thisfunctionis designedto simplify entry of long listsof boundary points. It will completesome
uncompletedfields, and will sort theresultinglist. If the upper/lowerindicationis not present for
someboundary point, it will be added as givenby stringl. If the Real/Virtua indicationis not
present, it will be added as given by string2. If no string2is given, it defaultsto Indet (for
Indeterminate). Asashortcut, thisfunctionwill also convert codesfor the Real/Virtual/Indet
entry. It will interpret0 as Real, 1 as Virtual,and 2 as Indet.

si mpl bps={{{0, 0, 1}, 1}, {{o0,1,0},1}, {{1,0,0}, 1},
{{0,2,0},2}, {{2,0,0},2}, {{0,3,0},3}}

{{{0, 0, 1}, 1}, {{0, 1, 0}, 1}, {{1, 0, 0}, 1}, {{0, 2, O}, 2},
{{2, 0, 0}, 2}, {{0, 3, 0}, 3}}

BPCl ean[si npl bps, "Lower", "Real "]

{{{0, 0, 1}, 1, Lower, Real }, {{O, 1, 0}, 1, Lower, Real },
{{1, 0, 0}, 1, Lower, Real }, {{0O, 2, 0}, 2, Lower, Real },
{{2, 0, 0}, 2, Lower, Real }, {{O, 3, 0}, 3, Lower, Real }}

m L BPSdfConsstentQ[lbps]

Thisfunctionwill return"True" if the set of lower boundary pointsgivenis consistentwith itself,
and "False" otherwise.

LBPSel f Consi stent | bps]

True

m UBPSdfConsistentQ[ubps]

Thisfunctionwill return"True" if the set of upper boundary pointsgivenis consistentwithitself,
and "False" otherwise.

UBPSel f Consi st ent 0 ubps]

True

= BPConsistentToEachOther Q[Ibps,ubps]

Thisfunctionwill return"True" if the sets of boundary pointsgiven are consi stent with each other,
and "False" otherwise.

BPConsi st ent ToEachQt her J | bps, ubps]

True

m SystemL imitsFromBP[Ibps,ubps]

Thisfunctionwill returnthe extremestates of the system, based on the upper and lower boundary
points. Theassumptionis madethat the boundary point sets givenare completeand valid.

SystenLi m t sFronBP[| bps, ubps]

{0, 33}

= StructureFromPhi[p,phi]

Thisfunctionwill createatableof all possiblecomponent stateswith the associated system states,
based only on p and phi.

StructureFronPhi [{{0,1,2},{0,1,2,3},{0,1}}, phi $Max]

{{{0, 0, 0}, 0}, {{0, O, 1}, 1}, {{0, 1, O}, 1}, {{O0, 1, 1}, 1},
{{0, 2, 0}, 2}, {{0, 2, 1}, 2}, {{0, 3, 0}, 3}, {{0, 3, 1}, 3},
{{1, 0, 0}, 1}, {{1, 0, 1}, 1}, {{1, 1, 0}, 1}, {{1, 1, 1}, 1},
({1, 2, 0}, 2}, {{1, 2, 1}, 2}, ({1, 3, O}, 3}, {{1, 3, 1}, 3},
{{2, 0, 0}, 2}, {{2, 0, 1}, 2}, {{2, 1, 0}, 2}, {{2, 1, 1}, 2},
{2, 2, 0}, 23, {{2, 2, 1}, 2}, {{2, 3, 0}, 3}, {{2, 3, 1}, 3}}

= StructureFromLBP[p,lbps,fphi]

Thisfunctionwill createatable of all possiblecomponent stateswith the associated system states,
based only on p, fphi and the set of lower boundary pointsibps.

StructureFromlBP[{{0, 1,2},{0,1,2,3},{0,1}},
| bps, {0, 1, 2, 3}]

{{{0, 0, 0}, 0}, {{0, O, 1}, 1}, {{0, 1, 0}, 1}, {{O0, 1, 1}, 1},
{{0, 2, 0}, 2}, {{0, 2, 1}, 2}, {{0, 3, O}, 3}, {{0, 3, 1}, 3},
{{1, 0, 0}, 1}, {{1, 0, 1}, 1}, {{1, 1, O}, 1}, {{1, 1, 1}, 1},
{{1, 2, 0}, 2}, {{1, 2, 1}, 2}, {{1, 38, 0}, 3}, {{1, 3, 1}, 3},
{{2, 0, 0}, 2}, {{2, 0, 1}, 2}, {{2, 1, 0}, 2}, {{2, 1, 1}, 2},
{{2, 2, 0}, 2}, {{2, 2, 1}, 2}, {{2, 3, O}, 3}, {{2, 3, 1}, 3}}

= StructureFromUBP[p,ubps,fphi]

Thisfunctionwill createatable of all possiblecomponent stateswith the associated system states,
based only on p, fphi and the set of upper boundary pointsubps.

StructureFromJBP[{{0, 1, 2},{0,1,2,3},{0, 1}},
ubps, {0, 1, 2, 3}]

{{{0, 0, 0}, 0}, {{0, O, 1}, 1}, {{0, 1, 0}, 1}, {{O0, 1, 1}, 1},
{{0, 2, 0}, 2}, {{0, 2, 1}, 2}, {{0, 3, O}, 3}, {{0, 3, 1}, 3},
{{1, 0, 0}, 1}, {{1, 0, 1}, 1}, {{1, 1, O}, 1}, {{1, 1, 1}, 1},
{{1, 2, 0}, 2}, {{1, 2, 1}, 2}, {{1, 3, 0}, 3}, {{1, 3, 1}, 33},
{{2, 0, 0}, 2}, {{2, 0, 1}, 2}, {{2, 1, 0}, 2}, {{2, 1, 1}, 2},
{{2, 2, 0}, 2}, {{2, 2, 1}, 2}, {{2, 3, O}, 3}, {{2, 3, 1}, 3}}

m SystemSpaceFromBP[lbps,ubps]

Thisfunctionwill discernthe system state space fphi based on the completesets of upper and
lower boundary pointsfor the system.

Syst enSpaceFr onBP[| bps, ubps]

(0, 1, 2, 3}

s BPTypeFind[bplist,phi]

Thisfunctionwill discernwhether each boundary point is either Real or Virtual, convertingany
Indet valuesin the table to one of thosetwo designations. The structurefunctionphi is necessary
input.

| bps3 = {{{0, 0, 2}, 1, "Lower", "Indet"},
{{o, 2, 0}, 1, "Lower", "Indet"},
{{2, 0, 0}, 1, "Lower", "lIndet"},
{{0, 0, 2}, 2, "Lower", "Indet"},
{{o, 2, 0}, 2, "Lower", "lIndet"},
{{2, 0, 0}, 2, "Lower", "Indet"},
{{o, 3, 0}, 3, "Lower", "Indet"}}

{{{0, 0, 2}, 1, Lower, Indet}, {{0, 2, 0}, 1, Lower, Indet },
{{2, 0, 0}, 1, Lower, Indet}, {{O, O, 2}, 2, Lower, Indet },
{{0, 2, 0}, 2, Lower, Indet }, {{2, 0, 0}, 2, Lower, Indet },
{{0, 3, 0}, 3, Lower, Indet }}

BPTypeFi nd[| bps3, phi $Max]

{{{0, 0, 2}, 1, Lower, Virtual }, {{O0, 2, O}, 1, Lower, Virtual },
{{2, 0, 0}, 1, Lower, Virtual }, {{0, 0, 2}, 2, Lower, Real },
{{0, 2, 0}, 2, Lower, Real }, {{2, 0, 0}, 2, Lower, Real },

{{0, 3, 0}, 3, Lower, Real }}

The StochasticAnalysisPackage

m General Comments and Definitions

We start by definingamultistatesystemthat we will use throughoutthis chapter for the sake of
example. Asisgenerallythecase, "p" isthelist of possiblestate valuesfor each component of the
system, "fphi" isthelist of possiblestate valuesfor the systemitself, and "pprob" isthelist of
probabilitiesthat each componentof the systemisin each one of its givenstates. phiSEnumwill bea
structurefunctionwhichwas explicitly defined by the customer, and phi$Max is a structurefunction
whick asimes the maximal valiie of anv of the comnonents

p={ Range[0, 3], Range[0, 2] }

{{0, 1, 2, 3}, {0, 1, 2}}

pprob={{0.05, 0.1, 0.15, 0.7},{0.1, 0.3, 0.6}}

{{0.05, 0.1, 0.15, 0.7}, {0.1, 0.3, 0.6}}

f phi =Range[0, 4]

{0, 1, 2, 3, 4}
phi $Max[x_] := Max[x]

phi $Enun{ x_] := Modul e[{syst ab},
systab = {{{0, 0}, 0},
{{o, 1}, 1},
{{0, 2}, 2},
{{1, 0}, 0},
{{1,1}, 1},
{{1, 2}, 3},
{{2,0}, 1},
{{2,1}, 2},
{{2, 2}, 3},
{{3,0}, 2},
{{3,1}, 4},

Asit will comein handy later, we now cal culatethe lower boundary pointsfor this system:

(1 bps=LBPFr ontt ruct ur e[p, phi $Enum fphi]) // Matri xForm

{0, 1} 1 Lower Real
{2, 0} 1 Lower Rea
{0, 2} 2 Lower Rea
{2, 1} 2 Lower Rea
{3, 0} 2 Lower Rea
{1, 2} 3 Lower Rea
{3, 1} 3 Lower Virtua
{3, 1} 4 Lower Real

m Function Documentation

m ConsistentProbabilitiesQ[ppprob]

Thisfunctionwill check that the matrix of component state probabilitiesis the samesize asthe
matrix of componentstate values, and that the probability that each componentisin SOME stateis
one. It operatesonly with discretesystems.

Consi stent Probabi lities{ p, pprob]

True

m SystemFromDirectEnumer ation[pphi, fphi, pprob]

Thisfunctionwill returnthe exact system state probabilitiesfor a discretesystem, based on the
component state spacesp, the system state spacefphi, the probabilitiesof each componentbeingin
each state pprob, and the structurefunction phi.

Syst enfronDi r ect Enuner ati on[p, phi $Enum f phi , ppr ob]

{0.015, 0.06, 0.145, 0.15, 0.63)}

= SystemFromL BPInclusionExclusion[plbps, fphi, pprob]

Thisfunctionwill return the exact system state probabilitiesfor a discretesystem. In contrastto
SystemFromDirectEnumerationthis functionattemptsto use Feller’ nclusion/Exclusion
Principleto saveon computationtime.

Syst enfr onLBPI ncl usi onExcl usi on[p, | bps, f phi, pprob]

{0.015, 0.06, 0.145, 0.15, 0.63}

= TrivialBoundsFromL BP[p,bpoint, pprob]

Thisfunctionwill returnthetrivial boundsfor the probability of beingin or abovethe particular
state of the discrete systemwhich correspondsto the lower boundary point whichwasgiven. Note
that only one lower boundary pointis given, asa simplelist of the componentstates(i.e. {2,2,1}.
Thefunctionreturnsalist of two numbers, wherethefirst is the lower bound and the secondis the
upper bound.

Trivi al BoundsFronlBP[p, {1, 2}, pprob]

{0.57, 0.98}

» | nclusionExclusionBoundsFromL BP[plbps, fphi, pprob, prec]

Thisfunctionwill returnthe Inclusion/Exclusionbounds on the probability of beingin or above
any particular state of the discretesystem. precisthe maximumnumber of Inclusion/Exclusion
termsto usein the summation(thelower this number, the rougher and faster the approximation).
Notethat, if, for any state, the number of summationtermsneededto exactly computethe
probabilityin questionislessthan or equal to prec, then an exact valuefor that stateis returned
rather than bounds.

I ncl usi onExcl usi onBoundsFr onLBP[p, | bps, f phi, pprob, 2]

{1, 0.985, {0.505, 2.065}, 0.78, 0.63}

m SystemMatrix[fphi,ans]

Thisfunctionwill mergethe system system stateswith the system probabilities, for further
examinationin termsof reliability measures. It functionsonly with discretesystems

Systemvatri x[f phi,
Syst enfronDi r ect Enuner ati on[p, phi $Enum f phi , pprob]]

({0, 0.0151}, {1, 0.06}, {2, 0.145}, {3, 0.15}, {4, 0.63}}

= Réliabilityl mportance[p,phi, fphi, pprob, i, j]

Thisfunctionwill returnthe Reliability Importanceof componenti in statej in the givensystem,
for discretesystems.

Reliabilitylnportance[p, phi $Enum fphi, pprob, 1, 1]

0.6

= ReliabilitylmportancesT able[pphi, fphi, pprob]

Thisfunctionwill returnthe Reliability Importancesfor every state of every component. Thisis
returnedin the ssmeformas p, and functionsonly for discretesystems.

Rel i abi l'i tyl nportancesTabl e[p, phi $Enum fphi, pprob]

({0., 0.6, 1., 2.3}, {0., 1.7, 2.1}}

= PToQ[pr]

Thisfunctionwill accept avector of probabilitiesof beingin a particular state and returnthe
probabilitiesof being over and aboveeach particular state. It hasmeaningonly for discrete
systems.

PTo{ Syst enfr onDi r ect Enuner at i on[p, phi $Enum
f phi, pprob]]

{1, 0.985, 0.925, 0.78, 0.63}

m QToP[qr]

Thisfunctionwill accept avector of probabilitiesof beingin or aboveany particular state and
return the probabilitiesof beingin each particular state. It has meaningonly for discretesystems.

QroP[PTo{ Syst enfronDi r ect Enuner ati on[p, phi $Enum
f phi, pprob]]]

{0. 015, 0.06, 0.145, 0.15, 0.63}

m Stieltjesintegral(f,g, {t, min:0, max: 1},fact: 2]

Thisfunctionwill returnan approximationto the Stieltjesintegral of f with respectto functiong,
wheref and g arefunctionsof t. Theintegrationtakesplacesusing 10"fact+1samplingsof f and g
betweenminand max. f and/or g may be discreteor continuous.

glt_] := Wiich[t<(1/3), O,
t>=(1/3), 1]

Plot[g[t], {t,0,1}, AxesLabel->{"t","g[t]"}]

glt]
1,

0.8¢

0.6

0.4

0.2}

0.2 0.4 0.6 0.8 1
- Graphics -

flt] :=t

Plot[f[t], {t,0,1}, AxesLabel->{"t", "f[t]"}]

flt]
l,

0.8¢

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1
- G aphics -
Stieltjesintegral [f[t], g[t], {t, O, 1}, 2]

0.34

m StieltjesintegralH|[f,g, {t, min:0, max:1},fact:2]

Thisfunctionwill return an approximationto the Stieltjesintegral of f with respectto functiong,
wheref and g arefunctionsof t. Theintegrationtakesplacesusing 10"fact+1samplingsof f and g
betweenmin and max, and then uses the NSum functionto estimatethe contributionto theintegral
of regionsbetweenmax and Infinity. See StieltjesIntegral for definitionsof f and g that are used
in thisexample. f and/or g may be discreteor continuous.

Stieltjesintegral HHf[t], g[t], {t, O, 1}, 2]

0.34

m StieltjesintegralG[f,g, {t, min:0, max:1},fact:2]

Thisfunctionwill returnan approximationto the Stieltjesintegral of f with respectto functiong,
wheref and g arefunctionsof t. Theintegrationtakes placesusing 10"fact+1samplingsof f andg
betweenmin and max, and then usesthe NSum functionto estimatethe contributionto theintegral
of regionsbetweenmax and Infinity and between-Infinity and min. See Stieltjesintegralfor
definitionsof f and g that are used in thisexample. f and/or g may be discreteor continuous.

Stieltjesintegraldf[t], o[t], {t, O, 1}, 2]

0.34

m P[cdfs, rules:none]

Thisfunctionwill returnthe CDF of arandomvariablewhichisamaximumof thosegivenin the
list named cdfsthroughtheir cumulativedistributionfunctions. If you wish not the general
solution, but rather an answer for a particular x, then enter that as an optional rule such as x->0.5.
If you wish an answer for a particular momentin timet, then you can enter that as x->x0, t->t0. It
isimportantto be clear on the meaningof the CDF for apoint in timefor acomponent. ThisCDF
isafunctionthat, at that point in time, givesthe probability of that componentbeingin or below
any givenstate. It hasthe samemeaningand functional formfor binary, multistate, continuous,
and mixed components.

cdf li st={Bi naryCDF[x, 1/ 2], Tri angul ar CDF[x, 3/ 4],
Uni f or nCDF[x] , Uni f or mM xedCDF[x, 1- E*(-t), 0] };

Pl ot[Evaluate[cdflist /. t->(1/2)], {x, -0.02, 1.04},
Pl ot Label ->"Graph of CDF's in cdflist, t=1/2",
AxesLabel ->{"x","F[x]"}]

FIX] Graph of CDF's in cdflist, t=1/2
1, I
0.8¢

0.6

0.4/

0.2

- G aphics -

psystenrP[cdflist, t->(1/2)];

Pl ot [psystem {x, -0.01, 1.01},
Pl ot Label - >
"Graph of System CDF for P[cdflist], t=1/2",
AxeslLabel - >
{"phi","F[phi]"}, Pl ot Range->{0, 1}]

Fi@ph of System CDF for Plcdflist], t=1/2
1 [

0.8

0.4

0.2 0.4 0.6 0.8 i Ph

- Graphics -

m S[cdfs, rules:none]

Thisfunctionwill returnthe CDF of arandomvariablewhichisaminimumof thosegivenin the
list named cdfsthroughtheir cumulativedistributionfunctions. 1f you wish not the general
solution, but rather an answer for a particular x, then enter that as an optional rule such as x->0.5.
If youwishan answer for a particular momentin timet, then you can enter that as x->x0, t->t0. It
isimportantto be clear on the meaningof the CDF for apoint in timefor acomponent. ThisCDF
isafunctionthat, at that point in time, givesthe probability of that componentbeingin or below
any givenstate. It hasthe samemeaningand functional formfor binary, multistate, continuous,
and mixed components. Pleasesee P for the definitionof the CDF list used in theillustration of
thisfunction.

ssystem=S[cdflist, t->(1/2)];

Pl ot[ssystem {x, 0, 1},
Pl ot Label - >
"Graph of System CDF for S[cdflist], t=1/2",
AxesLabel ->{"phi","F[phi]"},
Pl ot Range->{{0, 1}, {0, 1} }]

FIP& dph of System CDF for S[cdflist], t=1/2
1,

0.8
0.6¢

0.4;

0.2

0.2 0.4 0.6 0.8 1 Phi

- Graphics -

= Afcdf, X, a]

Thisfunctionwill returnthe CDF of arandomvariabley wherey=ax. aissomereal number, and
x isanother randomvariable. Thishasthe samemeaningand formfor continuous, multistate,
binary, and mixed systems.

cdf =Mul ti st at eCDF[x, {{0, 1/4},{1/2, 1/ 2}, {1, 1/ 4}}];

Plot[cdf // Evaluate, {x, -0.1, 1.1},
Pl ot Label - >" Graph of cdf",
AxesLabel ->{"x","F[x]"},

Pl ot Range- >{ 0, 1}]

Fx] Graph of cdf
1,

0.6¢

0.4

0.2

0.2 0.4 0.6 0.8
- G aphics -

asystemsA[cdf, x, 3/2];

Pl ot[asystem // Evaluate, {x, 0, 2},
Pl ot Label ->"Graph of Systemfor Alcdf]",
AxesLabel ->{"x","F[x]"},
Pl ot Range->{{0, 2}, {0, 1} }]

FIx] G aph of System for Afcdf]
1,

0.8

0.6

0.4

0.2}

0.25 0.5 0.75 1 1.25 1.5 1.75 2

- G aphics -

m Clfcdfl,{cdf2, min2:0, max2:1},x, z, fact: 2]

Thisfunctionwill returnthe probability that x+y islessthan or equal to somevaluez. TheCDF
of x isgivenby cdf1, and the CDF of y is givenby cdf2. min2 and max2 are the minimumand
maximumval uesthat the randomvariabley may assume(note: min and max parametersare
commonfor many typesof functionsin Rel Pack, and havegenerally the sameinterpretation- their
presencewill not alwaysbe commentedon in the documentationfor the function, if they are
identifiablein the parameterlist for that function). It isassumedthat cdf1 and cdf2 arefunctions
of x. fact hasthe sameinterpretationthat is doesin Stieltjesintegral. If zisnot givenasared
value, then the CDF isreturnedto you as afunctionof x.

clsystem=Cl[cdf // Hold, {BinaryCDF[x,1/2]}, x, z];

Plot[clsystem// Rel easeHold // Evaluate, {x, 0, 2},
Pl ot Label - >
"Graph of Systemfor Cl[cdf, BinaryCDF[x, 1/2]]",
AxesLabel ->{"x","F[x]"},
Pl ot Range->{{0, 2}, {0, 1} }]

fd%bh of System for Cl[cdf, Bi naryCDF[x, 1/2]]
1,

0.8/
0.6/
0.4/
0.2/
0.25 0.5 0.75 1 1.25 1.5 1.75 2%
- Graphics -

m CA[cdfl, minl:0, max:1,{cdf2, min2:0,max2:1},x, z, fact: 2]
Thisfunctionisidentical to C1, except that theresult is scaled to haveamaximumvalueof 1.

casystemrCA[cdf // Hold, {BinaryCDF[x,1/2]}, x, z];

Pl ot[casystem // Rel easeHold // Evaluate, {x, 0, 1},
Pl ot Label - >
"Graph of System for CAl cdf, BinaryCDF[x, 1/2]]",
AxesLabel ->{"x","F[x]"}, PlotRange->{{0,1},{0,1}}]

[d%abh of System for CA[cdf, Bi naryCDF[x, 1/2]]
1,

0.8

0.6

0.4

0.2}

0.2 0.4 0.6 0.8 1

- G aphics -

m CAV[cdfl, minl:0,max:1,{cdf2, min2:0,max2:1},x, z, fact: 2]

Thisfunctionisidentical to C1, except that the CDF for the average, rather than the sum, of the
randomvariablesrepresentedby cdf1 and cdf2 is returned. When minl=min2=0and
max1=max2=1,thiswill returnthe sameresult as CA.

cavsystemrCAV[cdf // Hold, {BinaryCDF[x,1/2]}, x, z];

Pl ot[cavsystem// ReleaseHold // Evaluate, {x, 0, 1},
Pl ot Label - >

"Graph of System for CAV[cdf, BinaryCDF[x, 1/2]]",
AxesLabel ->{"x","F[x]"}, PlotRange->{{0,1},{0,1}}]

&l¥ph of System for CAV[cdf, Bi naryCDF[x, 1/2]]
1,

0.8

0.6

0.4

0.2}

0.2 0.4 0.6 0.8 1

- G aphics -

m DiscreteBuild[sydlist,phi]

Thisfunctionwill takealist of completesys matricesfor different subsystems,and apply phi to
them so as to construct a sys matrix for the whole system. The probability of the systembeingin
any oneof its possiblestatesis determinedby direct enumeration.

x1=({0, 1/4},{1/2,1/2},{1, 1/ 4}};
x2={{0,1/2},{1, 1/ 2} };
x3={{0,1/3},{1/2,1/3},{1, 1/ 3}};

syslist={x1, x2, x3};

Di scret eBuil d[sysli st, phi $Max]

= PM[sydlist]

Thisfunctionis the purely discreteanalog of P. Notethat P will still work properly with discrete
systems, but if you know ahead ahead of timethat the entire systemis completely discrete, you
will savetimeby using PM rather than P. sydlistisinthe sameformasit wasgivenin
DiscreteBuild.

PM syslist]
(o) (2) (0 7))
= SM[sydlist]

Thisfunctionisthepurely discreteanalogof S. See PM for details.

SM syslist]

(oo 7} {7 =) {2}

m AM([sys, a]

Thisfunctionisthe purely discreteanalogof A. See PM for details. Notethat unlikesydlist, here
wearepassing only one system matrix.

AM syslist[[2]], 3/2]

> 5

—
—
o
N| =
-
—
N| w
N
-
__

s C1IM[sydist]

Thisfunctionisthe purely discreteanalogof C1. See PM for details.

C1M sysli st]

= CAM[sydlig(]

Thisfunctionisthe purely discreteanalogof CA. See PM for details.

CAM sysl i st]
(fo. b (2 2 (3 =b (3 51 5 =) (2 5
{1 5}

= CAVM[sydis]

Thisfunctionisthe purely discreteanalogof CAV. SeePM for details.

CAVM sysl i st]

(o 5) (& 50 5 =t 5 7 &) & 5
(L 2])

m Additional Commentary

s Commentson Timing

In many circumstances, SystemFromL BPI nclusionExclusiorand
InclusionExclusionBoundsFromLBRvill performtheir tasksfaster than
SystemFromDirectEnumeration.Thefollowingexamplewill illustratethisfor phi$Max.

m Definitions

p$1=Tabl e[Range[0, 3], { 4}]

{{0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}}

f phi $1=Range[0, 3]

{0, 1, 2, 3}

pprob$l = {{0.5043128477021241, 0.07245055618411537,
0. 05287763869180079, 0. 3703589574219598},
{0. 087617398287609, 0.3289199767039768,
0.2411610389233241, 0.3423015860850898},
{0. 4205428683153921, 0. 06576473583833683,
0. 407974829002557, 0.105717566843714},
{0. 2303276367256573, 0.2358913729230182
0.3206308214277661, 0.2131501689235582}};

| bps$1=LBPFr onst r uct ur e[p$1, phi $Max, f phi $1]

{{{0, 0, 0, 1}, 1, Lower, Real
{{0, 1, 0, 0}, 1, Lower, Real
{{0, 0, 0, 2}, 2, Lower, Real
{{0, 2, 0, 0}, 2, Lower, Real
{{0, 0, 0, 3}, 3, Lower, Real
{{0, 3, 0, 0}, 3, Lower, Real

{{0, 0, 1, 0}, 1, Lower, Real
{{1, 0, 0, 0}, 1, Lower, Real
{{0, 0, 2, 0}, 2, Lower, Real
{{2, 0, 0, 0}, 2, Lower, Real
{{0, 0, 3, 0}, 3, Lower, Real
{{3, 0, 0, 0}, 3, Lower, Real

e e e e o

b
h
b
b
h
b

m Calculations

Ti m ng[PToq Syst enfronDi r ect Enuner ati on[p$1,
phi $Max, f phi $1, pprob$1]]]

{0. 711 Second, {1, 0.99572, 0.945531, 0.708602 }}

Ti mi ng[PToQ Syst enfr onLBPI ncl usi onExcl usi on[p$1,
| bps$1, f phi $1, pprob$1]]]

{0.12 Second, {1, 0.99572, 0.945531, 0.708602 }}

Ti m ng[| ncl usi onExcl usi onBoundsFr onLBP[p$1,
| bps$1, f phi $1, pprob$1, 3]]

{0.1 Second, {1, {-0.0407177, 1.19742}, {0.47854, 1.01324},
{0. 654976, 0.711459 }}}

Ti mi ng[| ncl usi onExcl usi onBoundsFr onlLBP[p$1,
| bps$1, f phi $1, pprob$1, 2]]

{0. 08 Second,
{1, {-0.0407177, 2.7572}, {0.47854, 2.05417 }, {0.654976, 1.03153}}}

m |nterpretation

Notethat, in this case, obtainingthe systemstate probabilitiesfrom direct enumerationwasthe
most time consuming, obtai ningthis informationfrom the lower boundary pointswasfaster, and
obtainingonly boundson the systemstate valueswasfaster yet. Thelessthe precisionof the
boundsdesired, the faster the calcul ation.

The DynamicModels Package

m General Comments and Definitions

In general, these functionuse finite-state, continuoustime Markov chain methodsto performdynamic
modellingfor discretesystems. They areof little or no valuefor continuousor mixed componentsor
systems. Functionsbeginningwith theletters"PDP" are essentially assuminga non-repairabl esystem
that beginsin its maximal state. Functionsbeginningwiththeletters"CTMC" arefor general
continuous-time,finite-stateMarkov chains, and may represent repairablebehavior. Developmentof
the CTM Cfunctionsfollowsthe discussionin SystemReliability Theory by Arnljot Hoylandand

M arvir Raiicand

m Function Documentation

s PDPErlangian[M,val, t]

Thisfunctionwill returnthe p(i,t) valuesfor a pure death processwherethetransitionratesareal the
sameand the systemmay transitiononly to the next lower state. val isthe valueof the common
transitionrate, andt isthe momentin timethe solutionis desiredfor. val and/ort may be symbolicor
constant; constant valueswill producea simplifiedsolution. M must be a positiveinteger, however.
What is returnedis alist containingthe probability (asafunctionof t) of beingin any of theM+1
states, startingwith the lowest state and progressingto the highest (best) state. If one hasafphi
vector of lengthM+1, it can be mergedwith the result of this calcul ationto form a completesystem
matrix, using SystemMatrix[fphi,ans]. It is assumedthat the system beginsin its maximal state.

pdpel=PDPErl angian[1, L, t]

{1 _ E—Ll’ E—Lt}

Pl ot [Eval uat e[pdpel /. L->2], {t, 0, 2},
Pl ot Label - >"PDPEr | angi an[1, 2,t] ",
AxesLabel ->{"t","P(i,t)"},

[VPR o VR o R |

P, t) PDPEr | angi an[1, 2,1]
1
0.87
0.6¢
0.4;
0.2
: : : =t
0.5 1 1.5 2
- G aphics -
pdpe5 = PDPEr| angian[5, L, t]
-Lt -Lt 1 -Lt 1 2+2 1 -Lt 1 3+3 1 -Lt 144+ 4
{I-BY B Lt - S B L2 - S BN L - o B,
1 -Lt 14+ 4 1 -Lt 13 +3 1 -Lt 1 2+2 -Lt -Lt
Sy B B S B2 BN L, B

Pl ot [Eval uat e[pdpe5 /. L->5], {t, 0, 2},
Pl ot Label - >" PDPEr | angi an[5, 2,t] ",
AxeslLabel ->{"t","P(i,t)"},

Pl ot Range- >{ 0, 1}]

P@,t) PDPEr | angi an[5, 2,t]

1
0.8
0.6¢

0.4

0.2

- G aphics -

Aswasthe casewith the previousgraphfor thisfunction, the curvewhich beginsas P(i,0)=1is the
probability of beingin the maximal state, as afunction of time. The curvewhich approachesl as
t->Infinityis the probability of beingin the minimal state as a functionof time. The other curves
areintermediarystates.

PDPEr | angi an[5, 2, 4] // N

{0.900368, 0.0572523, 0.0286261, 0.0107348, 0.0026837, 0.000335463 }
Exact valuesmay be obtainedimmediately,if symbolicsolutionsare not desired.

Pl us @@ PDPEr | angi an[10, L, t]

1

Notethat the sum of the probabilitiesof beingin any given stateis 1.

Systenmvatri x[Range[0, 3], PDPErl angi an[3, L, t]]

. : 1 1
{{o0 1-E* -E Lt - S EMLA) {1 5

{3, E*'}}

EY'L2t?}, {2, EYLt),

m PDPAd]acent[mulist,t]

Thisfunctionwill returnthe p(i,t) valuesfor a pure death processwhich beginsin the maximal
state and which may maketransitionsonly to the next lower state. mulistisalist consistingof
{m10,m21, ..., mM,M-1} ,wheremij is thetransitionrate betweenstatei and statej. Notethat for
asystemof thistypetherewill be one moresystemstatethan thereare elementsin mulist. Itis
assumedthat the elementsof mulist areall different. If you giverea valuesfor themulist
elements, the calculationwill be greatly ssimplified. The dataisreturnedin the sameformthey are
for PDPErlangian.

pdpatest = PDPAdjacent[{L1,L2,L3},t]

1 E7L31
{tiL2Ls (Ll L2L3 (L1-L3) (L2-L3)L3
L1t L2t
E - E , L2 L3
[1 (-L1+L2) (-L1+L3) (L1-L2)L2 (-L2+L3)
E7L3 t Ele t E7L2 t
((Ll—LS) (L2 -L3) " (L1+L2) (-L1+L13) "(L1-L2) (-L2+L3))’
E—LS t E—LZ t L3t
L3(L2—L3+—L2+L3)’E }

Pl ot [Eval uat e[pdpatest /. {L1->1, L2->2, L3->3}],
{t, 0, 4},
Pl ot Label - >" PDPAdj acent[{1,2,3},t]",
AxesLabel ->{"t","P(i,t)"},
Pl ot Range- >{ 0, 1}]

P(,t) PDPAdj acent [{1,2,3},t]

1
0.8}
0.6}

0.4;

0.2

- Graphics -

The curvewhichbeginsas P(i,0)=1is the probability of being in the maximal state, asafunction
of time. The curvewhich approachesl ast->Infinityis the probability of beingin the minimal
state as afunctionof time. The other curvesareintermediarystates.

PDPAdj acent[{1,2,3},1] // N

{0. 25258, 0.440988, 0.256645, 0.0497871 }

(PDPAdj acent[{L1,L2,L3},t] /.
{L1->1, L2->2, L3->3, t->1}) ==
PDPAdj acent[{1, 2, 3}, 1]

True

Numerical resultsmay of courseal so be obtained, as wasthe casefor the previousfunction.

= PDPNonAdjacent[M,mu,t]

Thisfunction returnsthe general form of a pure-deathprocess 9(i,t) expressionswhenit is
assumedthat the systemmay transitionto ANY lower state. Asthiscalculationisentirely
symbolicit can takelargeamountsof timeto cal culateand producequite complicatedouput. The
transitionratesin thisfunctionare assumedto be distinct. muis the variablenamewhichwill
form the basi c tag to which subscriptswill be attachedto identify transisitionrates; it may not be a
real number, but must be asymbol. In general, mu[i,j] isthetransitionratefromstatei to statej,
whereM isthe maximal stateand 0 is the minimal state. The parametert (for time) may be
symbolic,or areal number, asdesired. If anythingis knownabout the systemtransition matrix
(such asthereal valuesfor the transitionrates), CTM CStateProbabilitieq Jwill produceamuch
faster solutionand should be used instead. It is assumedherethat the systemhas M+1 states. For
PDPNonAdjacent,M hasamaximumvalueof 19.

PDPNonAdj acent[2, L, t]

E-t (L12,0]+L(2,1]) 1

{Li2, 0] (+

L[2, 0] -L(2, 1] "L[2, 0]+LC[2, 1])*"[1' OJLi2, 1]

Eft L[1,0] 1
+ +

(L[l, 0] (L[1, O] -L[2, O] -L[2, 1]) L[1, O] (L[2, O] +L[2, 1])
E-t (L12,07+L([2,1])
(L[2, 0] +L[2, 1]) (-L[1, O] +L[2, O] +L[2, 1]))
E-t (L[2,0]+L[2,1]) E—tL[l,O]
L2, 1] (L[l, 0] -L(2, 0] -L[2, 1] = —-L[1, 0]+L(2, 0] +L(2, 1]
Eft (L[2,0]+L[2,l])}

m CTMCStateProbabilitiematrix,t,initialstate:maximal]

Thisfunctionwill fine the expressionsfor the p(i,t) valuesfor a continuous-time,finite-state
Markov chainwhich beginsin stateinitialstate(oneof 0, 1, 2, ..., M). Thisfunctionmay be used
to represent repairabl esystems, and representsthe most general solutionto thistypeof problem
(PDPErlangian[],PDPAdjacent[],and PDPNonAdjacent[]areall special casesof thistechnique).
If initialstateis not specified, thenthe maximal stateis assumed. The parameterfor timeis
assumedto bet. Theparameter matrix isthe statetransisitionmatrix. Thismatrix is suchthat the
current stateis the columnnumber-1(with O on the extremeleft) and the next stateis the row
number-1(with 0 on thetop). Aswithall matrix matricesthat are used asinput in thispackage,
the diagonal elementsof the transitionmatrix (i.e. the rate of transition betweeneach state and
itself) does not need to be specified (and in this devel opmentmay be replacedby 0 values, if
desired). Theform of the solutionisthe sameasthat for all the "PDP" functions(alist of
probabilitiesof the systembeingin each state, from the minimal state to the maximal state, asa
functionof time). t may of coursebe either symbolicor numerical. matrix may also be symbolic
or numerical, althoughanswerswill certainbe returnedmorerapidly if matrix is numerical.

(sanmpmat1 = {{0, | anbda},
{nu, 0}}) // MatrixForm

o]

CTMCSt at eProbabi i ties[sanpmat 1,t]

E—(Ianbdamu!t 1
{Ianbda (—Ianbda “mu " Tanbda + mu)
E—(Ianbdamu)t | anbda mu
| anbda + nmu +Ianbda+rru}

Notethat thiswasa two-staterepairablesystem, with the transitionrate from the maximal state to
the minimal state being lambda, and the transitionrate from the minimal state to the maximal state
being mu.

(sanmpmat 2 = {{0, 0, 2.1},
{0, 0, 1.3},
{2.9, 3.2, 0}}) // MatrixForm

0 0 2.1
0 0 1.3
2.9 3.2 O

sanpmat 2p=CTMCSt at eProbabi l i ti es[sanmpmat2,t] //
Sinplify // Chop

{0. 339909 - 0.3152 E® 42108t _ 0 0247091 E3078921,
0.190693 - 0.213297 E 642108t , 0. 0226039 E3 078921,
0.469398 +0.528497 E® 42198t , 0. 00210525 E3 078921}

Pl ot [Eval uat e[sanpmat 2p], {t, 0, 1},
Pl ot Label - >" CTMCSt at eProbabi l i ti es[sampmat 2,t]",
AxesLabel ->{"t","P(i,t)"},
Pl ot Range- >{ 0, 1}]

P(i, t }cTMCSt at ePr obabi | i ti es [sampmat 2, t |
1
0.8

0.6

0.4;

0.2

- G aphics -

Notethat these solutionscontainatransient portion to the solution, which decaysto 0 ast
approachesinfinity. The asymptoticsolution may be abtainedwith
CTMCSteadyStateProbabilitied[].

(sampmat 1b = {{0, L, 0, 0},
{0, 0o, L, 0O},
{0, 0, 0O, L},
{0, 0, 0, 0}}) // MatrixForm
0L OO
0O 0L O
0 0 0 L
0 0 0O

Si npl i fy[CTMCSt at eProbabi liti es[sanpmat 1b,t]] ==
Si mpl i f y[PDPEr | angi an[3, L, t]]

True

Weillustratewith the ssmpmat1bexampleabove, that CTM CStateProbabilitiesncorporatesthe
functionality of PDPErlangianas a special case.

(sanpmat 1¢ = {{0, 1, 0, 0},
{0, 0, 2, 0},
{o, o, 0, 3},
{0, 0, 0, 0}}) // MatrixForm

o O O o
O O O B
o O N O
O w O o

Si npli fy[CTMCSt at eProbabi liti es[sanpmatlc,t]] ==
Si npl i fy[PDPAdj acent[{1, 2, 3},t]]

True

Weillustratewith the sasmpmat1cexampleabove, that CTM CStateProbabilities ncorporatesthe
functionality of PDPAdjacentas a special case.

(sanpmat1d = {{O0, L[1,0], L[2,0]},
{0, 0, L[2,1]},
{0, o, 0}}) // WMatrixForm
0 L[1, 0] L[2, 0]
0 0 L[2, 1]
0 0 0

CTMCStateProbabilitiesal so incorporatesthe functionality of PDPNonAdjacentas a special case.
CTMCStateProbabilities ssmpmat1d,ttould be comparedto PDPNonAdjacent[2,L ,t](for
example)toillustratethis.

s CTMCMeanAbsor ptionTimegmatrix,absor bingstates,initialstate: maximal
]

Thisfunctionwill returnthe meantimesto absorptionin the given absorbingstates, when the
systembeginsin stateinitialstate. Theremust be at |east one absorbing state either specifiedin the
absorbingstateslist, or already presentin the transition matrix (identifiablethroughazero
column). Itisassumedthat theinitial stateis not an absorbingstate. Asthisfunctionis
discerningthe meantimeto absorptionin ANY absorbingstate, it returnsone number representing
that meantime. Asusual, matrix may be symbolicor numerical.

(sanpmat3 = {{0, L, 0},
{0, 0, 2L},
{0, M 0}}) // MatrixForm

0L O
0 0 2L
0O M O

sanprmat 3mat = CTMCMeanAbsor pti onTi nes[sanpmat 3] //
Simplify
3L+M
2 L2

Pl ot 30 sanpmat 3mat, {L, 1, 3}, {M 1, 3},
Pl ot Label - >" CTMCMeanAbsor pti onTi nes[sanpmat 3] ",
AxeslLabel ->{"L","M,"MA Ti me"}]

CTMCMeanAbsor pti onTi nes [sanphat 3]

- SurfaceG aphics -

» CTMCSteadyStateProbabilitiegmatrix]

Thusfunctionwill returnthe steady-stateval uesfor the probabilitiesof beingin each stateasa
functionof time. It returnsthisinforationin the sameform that its non-steady-stateequivalent,
CTMCStateProbabilitieq[] does.

CTMCSt eady St at ePr obabi i ti es[sampmat1] // Sinplify

{ | anbda nmu }
| anbda +nmu’ | anbda +nu

sanpmat 2ps = CTMCSt eady St at ePr obabi | i ti es[sanpmat 2]

{0. 339909, 0.190693, 0.469398 }

Please see CTM CStateProbabilitiesfor the definitionsof sampmatland sampmat2

Pl ot [Eval uat e[sanpmat 2p- sanpmat 2ps], {t, 0, 2},
Pl ot Label - >

"Differences Between Steady State and True Val ues”,
AxeslLabel ->{"t",""}]

Di fferences Between Steady State and True Val ues

0.01¢

-0.01¢

-0.02¢

- G aphics -

s CTMCMeanArrivalgmatrix]

Thusfunctionwill returnthe expectednumber of visits("visits' meansarrivalsinto that state,
whichis equal to departuresfrom that state) for each state per unit timeover along period of time
in steady state. Thisexpressionreturnsmeaningful valueswhenthere are no absorbingstates.

(sanpmat4 = {{ O, L1, L2, O},
{m, 0, O, L2},
{m, 0, O, L1},
{ 0 M, M, O0}}) // MtrixForm

CTMCMeanArrival s[sanpmat4] // Sinplify

L1L2 (M +M) L2 ML (L1 + M) L1 (L2 + ML) M2
{ (LI +ML) (L2 +M2) ' (LI+M) (L2 +M) ' (LI +M) (L2 +M2)°
(L1 +L2) ML M2
(L1 + ML) (L2 + MR) }

s CTMCStayDurationgmatrix]

Thusfunctionwill returnthe expected durationof a stay in each statein steady state. It returns
meani ngful answerswhen there are no absorbingstates.
CTMCSt ayDur at i ons[sanpmat 4]

{ 1 1 1 1 }
ML+M2 LT +MRT OL2+MT L1 +L2

The Distributions Package

m General Comments and Definitions

Thispackageis designedto provideaccessto avariety of distributions(in theform of PDF' s,CDF's,
and R’ s,and SY Smatrices) that will assist in stochasticmodel lingfor binary, multistate, continuous,
and mixed systems. A few additional functionsare includedwhichwill help set the parameters
properly for the Gammaand Weibull distributions,whenthey are being used as U[t] (lifetime
weighting)functions. Theselast two functionsbeginwith thewords" CustomerLimits'. Functions
whichcontain"SY S* as asuffix (and FnEstimate)will return SY Smatrices. Functionswhich contain
"PDF" asasuffix or which beginwith alower case"p" will returna PDFfor a purely continuous
distribution(thedistinctionhereisthat the"p" PDF sarefor randomvariableswith arange
[O,Infinity],whilethe"PDF" PDF sarefor randomvariableswith a range[min,max],wheremin and
arebothfinite). Functionswhich containthe suffix "CDF" will return general CDF s(functions, rather
than matrices). Functionsthat beginwith alower case"r" are 1-CDF for the sameset of distributions

m Function Documentation

To savespace, plotsare hot shownfor these distributions. Any distributionmay be plotted by
Mathematica, with any valuefor its parameters. Thefollowingcommand,for example, graphsthe
Log-Normal distribution(pdin) withamu of 3 and asigmaof 1.

Plot[pdin[3,1,t], {t,0,30}, PlotLabel->"pdIn[3,1,t]",
AxeslLabel - >{"x" . "FI x1"}1

Fx] pdin[3,1,t]
0.03¢}
0. 025
0.02;
0. 015
0.01;

0.005¢

- G aphics -

= rdc[n,t]
Thisfunctionwill return R(t) wherethe distributionis Chi with n degreesof freedom.
rdc[n, t]

1 - GarmaRegul ari zed

N| S
N

= rdcgn,t]
Thisfunctionwill return R(t) wherethe distributionis Chi-Squarewith n degreesof freedom.
rdes[n, t]

1 - GammaRegul ari zed

N| S
o
N|

= rdeflambdait]

Thisfunctionwill return R(t) wherethe distributionis Exponential with n degreesof freedom.

rde[| anbda, t]

E—I anbda t

m rdfr[n1,n2t]
Thisfunctionwill return R(t) wherethe distributionis F with n1 and n2 degreesof freedom.
rdfr{nil, n2,t]
n2 n2 nl]

1 - Bet aRegul ari zed [W 1, > 5

= rdg[alpha,betajt]
Thisfunctionwill return R(t) wherethe distributionis Gammawith parametersal phaand beta.

rdg[al pha, bet a, t]

t

1 - GanmaRegul ari zed [al pha, 0, Bera

= rdhn[thetat]

Thisfunctionwill return R(t) wherethe distributionis Half-Normal with parameterstheta.

rdhn[theta,t]

ttheta}

\/;

1-Erf]

= rdin[mu,sigma,t]

Thisfunctionwill return R(t) wherethe distributionis Log-Normal with parametersmu and sigma.

rdl n[mu, si gma, t]

—rru+Log[t]]

1
1+ = |-1-Erf
2 [[\/2 sigma

= rdncgn,lambda,t]

Thisfunctionwill return R(t) wherethe distributionis Non-Central Chi Squarewith parametersn
and lambda.
rdncs[n, | anbda, t]

1 _2™M/2

n Ianbdatl]

t
J Ez (lamda-t1) {113 pyner geomet ri cOF1Regul ari zed [7,)
0

dtl

= rdnfr[nl,n2,lambda,t]

Thisfunctionwill return R(t) wherethe distributionis Non-Central F with parametersni, n2, and
lambda

rdnfr[nl, n2, | anbda, t]

nl}

1 - (Efl anbda /2 nlnl/z r]2n2/2 Ganmma [T

t
Ganma [1 + %] J E2_2_rrla{rntndf\nn1[t§ tzvlz (-2+n1) (n2 +n1t2)’12 (-n1-n2)
0
n2 nl | anbda n1t2
Laguerrel [42, -1 5, -SSR LT atz) /
nl n2 nl +n2
(Beta[-] Ganma [2252

m rdr[sgmaj]

Thisfunctionwill return R(t) wherethe distributionis Rayleighwith parametersigma.

rdr[sign,t]

2
t
E7 2 sigma?

= rdw[alpha,beta,t]
Thisfunctionwill return R(t) wherethe distributionis Weibull with parameter al phaand beta.

rdwf al pha, bet a, t]

E" t \alpha
\ beta /

= rdu[max,t]

Thisfunctionwill return R(t) wherethe distributionis Uniform, between 0 and max.

rdul max, t]
1+% (71+ (max -t) Sign[max -t] t Sign[t]
max max
= pdc[n,t]

Thisfunctionwill returnf(t) wherethe distributionis Chi with n degreesof freedom.
pdc[n, t]

21—% E—% t -1+n
Ganma [3-]

= pdeg[n,t]
Thisfunctionwill returnf(t) wherethe distributionis Chi-Squarewith n degreesof freedom.

pdcs[n, t]

2-n/2 E-t/2 t -l+3
Gamma [-]

= pdeflambda,t]

Thisfunctionwill returnf(t) wherethe distributionis Exponential with n degreesof freedom.

pde[| anbda, t]

E-'amdat | aphda

= pdfr[nl,n2;t]
Thisfunctionwill returnf(t) wherethe distributionis F with n1 and n2 degreesof freedom.

pdfr[nil, n2,t]

1 1
n1nt/2 p2an2/2 ¢ -1+5k (N2 +nlt)z (-n1-n2)

Beta[L-, L2]

= pdg[alpha,beta,t]
Thisfunctionwill returnf(t) wherethe distributionis Gammawith parametersal phaand beta.

pdg[al pha, bet a, t]

bet g ~2' Pha E*be'ﬁ t ~1+al pha
Game [al pha]

= pdhn[theta,t]
Thisfunctionwill returnf(t) wherethe distributionis Half-Normal with parameterstheta.

pdhn[theta,t]

_t2theta?
T

2E t heta

Vs

= pdin[mu,sigmajt]

Thisfunctionwill returnf(t) wherethe distributionis L og-Normal with parametersmu and sigma.

pdl n[mu, si gna, t]
(-mu+Log [t])?2

E7 2 sigm?2

\/2 7t signmat

= pdncgn,lambdait]

Thisfunctionwill returnf(t) wherethe distributionis Non-Central Chi Squarewith parametersn
and lambda.

pdncs[n, | anbda, t]

n Ianbdat]

2-M/2 g3 (Hlambda-t) ¢ -1+% Hyper geonet ri cOF1Regul ari zed [7, 7

= pdnfr[nl,n2lambdat]

Thisfunctionwill returnf(t) wherethe distributionis Non-Central F with parametersnl, n2, and
lambda.

pdnfr[nil, n2, | anbda, t]

=

1 1
(E—I ambda/2 nnl/2 non2/2 ¢ 3 (21 (pp 41t)z (N1n2)

Beta [-, 12

Hyper geonetri c1F1 |

nl +n2 nl | anbda nlt }
2 ' 2 2(n2+nlt))
= pdr[sigma,t]
Thisfunctionwill returnf(t) wherethe distributionis Rayleighwith parameter sigma.

pdr[signa,t]

2
t
E7 2 sigma?2 t

si gma?

= pdw[alpha,betait]

Thisfunctionwill returnf(t) wherethe distributionis Weibull with parameter al phaand beta.

pdw al pha, bet a, t]

al pha bet a /P E-(gira) """ -1+alpha
= pdu[max,t]
Thisfunctionwill returnf(t) wherethe distributionis Uniform, between0 and max.

pdu[max, t]

Sign[t]-Sign[-max +t]
2 max

m BinaryCDF[x,p]

Thisfunctionwill return the probability of a componentor systembeingin or below the given
statex, giventhat its allowablestatesare{ 0,1} , and that the probability of the unit beingin state 1
isp. For thisfunction, the techniquesof makingthe parametersfunctionsof time, plotting, etc.
will be demonstrated. Thetechniqueswill work in the sameway for all functionsin that package
withasuffix "CDF", and may not be demonstratedanew for each subseguent function.

Bi nar yCDF[1/ 2, 3/ 4]
1

4
Bi nar yCDF[- 1, 3/ 4]
0

Bi nar yCDF[1, 3/ 4]

1

Pl ot [Bi nar yCDF[x, 3/ 4], {x,-0.2, 1. 2},
Pl ot Label - >"Bi nar yCDF[x, 3/ 4] ",
AxesLabel ->{"x","F[x]"},

Pl ot Range- >{ 0, 1}]

Fx] Bi nar yCDF [X, 3/4]
1,
0.8}

0.6¢

0.4

0.2}

-0.2 0.2 0.4 06 08 1 1.2
- G aphics -
bi ncdf =Bi naryCDF[x, rde[1,t]];
Pl ot [bi ncdf /. t->0,{x,-0.2,1.2},
Pl ot Label - >"Bi naryCDF[x, rde[1, 0]]",
AxesLabel ->{"x","F[x] "},
Pl ot Range- >{ 0, 1}]

FIX] BinaryCDF[x,rde[1,0]]

1,
0.8
0.6

0.4

0.2}

-0.2 0.2 0.4 0.6 0.8 1 1.‘2
- Graphics -

Pl ot [bincdf /. t->1,{x,-0.2,1.2},
Pl ot Label - >" Bi naryCDF[x, rde[1, 1]] ",
AxeslLabel ->{"x","F[x]"},
Pl ot Range- >{ 0, 1}]

FIX] BinaryCDF[x, rde[1,1]]
1,

0.8

0.6

0.4}

0.2}

-0.2 0.2 0.4 0.6 0.8 1 1.2

- G aphics -

= MultistateCDF[x,sys]

Thisfunctionwill returnthe probability of acomponentor systembeingin or below the given
statex, giventhat its allowablestates are as given by sys (aregular multistatesystemmatrix).
Dependingon how sysis defined, the domain of the randomvariablein questionis not necessarily
[0,1].

nmul t sys=Syst enmvat ri x[Range[0, 3]/ 3, PDPEr | angi an[3, 2, t]]

1

_2 -2 -2 2
{{0, 1-E?' -2E2't ~2E?'t?}, {?

{1, E?'}}

2E’2tt2}, { , 2E’2tt},

(MEN

Notethat in the sys matrix defined above, the state valuesare not necessarilyintegers. In general,
in RelPack, oneis allowedto and encouragedto specify state valuesfor componentsand systems
that arereflectiveof the customer satisfactionassociatedwith each level, rather than state values
whichreflect only the ordinal number of that state. When one specifiesa systemstateasa
parameterinput to afunction, in general one specifiesthe actual state valuerather thanits ordina
number. Theapproach (philosophically)with Rel Packisthat the binary systemstatesarenot 0,1
becausel isthefirst integer above0, but rather because0 represents0% customer satisfactionand
1 represents100% customer satisfaction. Thus, for most Rel Pack work, the state valuesmay (and
should) be non-integers,with amaximal valueof 1 and aminimal value of 0 (thesemaximal and
minimal valuesare commondefaultsfor many functions).

Ml ti stat eCDF[1/ 2, mul t sys]

1-E2'-2E2'¢

mul tsys[[1,2]]+mul tsys[[2,2]] ==
Mul ti st at eCDF[1/ 2, nul t sys]

True
mul t sys

{{0, 1-E?' -2E?'t -2E?'t?}, {%, 2E?'t?}, {%, 2Bt}

{1, E?'}}

w| =

Plot[Mil tistateCDF[x, nultsys] /. t->1,{x,-0.2,1.2},
Pl ot Label ->"Muil ti st at eCDF[x, nul t sys] - t=1",
AxesLabel ->{"x",""},

Pl ot Range- >{ 0, 1}]

Mul tistateCDF[x, nultsys] - t=1
1,

0.8

0.6

0.4:

0.2}

0.2 0.2 0.4 0.6 08 1 1.2

- G aphics -

= Countablel nfinityCDF[x,mmadist]

Thisfunctionwill accept either GeometricDistribution[pJor NegativeBinomial Distribution[n,ppr

PoisonDi stribution[mu]and map the states of discretedistributionsinto therange[0,1], returninga
CDF reflectingthis new distribution. Notethat one’ schoicesfor "mmadist” in this casearelimited
to thosein the Statistics' DiscreteDistributions'standard M athemati capackage.

ci cdf = Count abl el nfi ni t yCDF[x, Poi ssonDi stribution[2]];

Pl ot[cicdf,{x,-0.2,1.2},
Pl ot Label - >
" Count abl el nfi ni t yCDF[x, Poi ssonDi stribution[2]]"
AxeslLabel ->{"x",""},
Pl ot Range- >{ 0, 1}]

Count abl el nfi ni t yCDF[x, Poi ssonDi stribution[2]]
1,

0.8

0.6

0.4

0.2

0.2 0.2 0.4 0.6 08 1 1.2
- Graphics -

= UniformCDF[x]

Thisfunctionwill return the probability of a uniformly distributed continuousrandomvariable
beinglessthan or equal to x, wherethe domainof therandomvariableis[0,1].

Uni f or mCDF[1/ 2]

1

2

Pl ot [Uni f or CDF[x], {x, -0. 2, 1. 2},
Pl ot Label - >" Uni f or mCDF[x] ",
AxeslLabel ->{"x","F[x]"},

Pl ot Range- >{ 0, 1}]

Fx] Uni f or mCDF []

1, N
0.8
0.6

0.4

0.2

0.2 0.2 0.4 0.6 08 1 1.2
- G aphics -

m Triangular CDF[x,a:1/2]

Thisfunctionwill returnthe probabilitythat a unitisin or below the given state x, giventhat the
distributionin questionis triangular on the domain[0,1], and that the mode of that distributionis a.

Pl ot [Tri angul ar CDF[x, 1/ 2], {x,-0. 2, 1. 2},
Pl ot Label - >" Tri angul ar COF[x, 1/ 2] ",
AxeslLabel ->{"x","F[x]"},

Pl ot Range- >{ 0, 1}]

FIX] Triangul ar CDF[x, 1/2]
1,
0.8¢
0.6

0.4

0.2¢

-0.2 0.2 0.4 0.6 0.8 1 1.2

- G aphics -

= NonTruncatedCDF[x,mmadist]

Thisfunctionwill returnthe probability of beingin or below the givenstate x, for adistribution
that hasbeenscaledto liein[0,1]. Thisisdistinguisedfrom TruncatedCDF,in that
TruncatedCDFtakesthe probability of beingin or abovestate 1 and addsthat to the probability of
beingin state 1, and takesthe probability of beingin or below state 0 and addsthat to the
probability of beingin state0. NonTruncatedCDHinearly scalesthe CDF so that the probabilities
of beingoutsideof [0,1] are even appliedthroughout[0,1]. Notethat mmadistmay be any

M athematicadistribution, discreteor continuous. However,if adiscretedistributionis used, it
should haveat |east some possiblevaluesin therange[0,1].

Pl ot [NonTr uncat edCDF[x, Exponenti al Di stri bution[2]],
{x,-0.2,1.2},
Pl ot Label - >" NonTr uncat edCDF[x, Exponenti al Di stribution[2]]"
AxeslLabel ->{"x",""},
Pl ot Range- >{ 0, 1}]

NonTr uncat edCDF [x, Exponenti al Di stri bution[2]]
1,

0.8}
0.6

0.4

0.2

0.2 0.2 0.4 0.6 08 1 1.2
- Graphics -

= UniformMixedCDF[x,li:0, ui:Q]

Thisfunctionreturnsthe probability of asystembeingin or below the givenstate x, giventhat its
alowablestatesare[0,1], the probability of the systembeingin state 1 is ui, the probability of the
systembeingin state 0 isli, and the probabilitiesof beingin any statein (0,1) aregovernedby a
uniform continuousdistribution.

Pl ot [Uni f or M xedCDF[x, 1/8, 1/4], {x,-0.2,1.2},
Pl ot Label - >" Uni f or MM xedCDF[x, 1/8, 1/4]",
AxesLabel ->{"x",""},

Pl ot Range- >{ 0, 1}]

Uni formM xedCDF[x, 1/8, 1/4]

0.4

0.2 0.2 0.4 06 0.8 1 1.2
- G aphics -

= TruncatedCDF[x,mmadist]

See NonTruncatedCDFfor a discussionof this TruncatedCDF,and for a discussionof the
differencesbetween TruncatedCDFand NonTruncatedCDF.

Pl ot [Truncat edCDF[x, Exponential Distribution[2]],
{x,-0.2,1.2},
Pl ot Label - >
"Truncat edCDF[x, Exponential Di stri bution[2]]",
AxesLabel ->{"x",""},
Pl ot Range- >{ 0, 1}]

Truncat edCDF [x, Exponential Distribution[2]]
1,

0.6

0.4

0.2 0.2 0.4 0.6 0.8 1 1.2
- G aphics -

= UniformPDF[x,min:0, max:1]

Thisfunctionwill returnthe PDF for a uniform continuousrandom variablewhich hasthe domain
[min, max].

Pl ot [Uni for nPDF[x], {x,-0.2,1.2},
Pl ot Label - >" Uni f or nPDF[x] ",
AxeslLabel ->{"x", "F[x] "}]

Fx] Uni f or nPDF [x]
1

0.8}

0.6¢

0.4}

0.2}

0.2 0.2 0.4 0.6 08 1 1.2
- Graphics -

= Triangular PDF[x,a:1/2, min:0, max:1]

Thisfunctionwill returnthe PDF for a triangular randomvariablewith modea, and domain
[min,max].

Pl ot [Tri angul ar PDF[x, 3/4], {x,-0.2,1.2},
Pl ot Label - >" Tri angul ar PDF[x, 3/4]",
AxesLabel ->{"x","F[x]"}]

FIX] Triangul ar PDF[X, 3/4]
2,

1.5}

0.5¢

0.2 0.2 0.4 0.6 08 1 1.2
- Graphics -

= BernoulliSY Jp]

Thisfunctionwill returnthe SY S multistatesystemfor a Bernoulli randomvariablewhichisin
state 1 with probability p and state O with probability (1-p). Essentialy,thisisthe samerandom
variableas BinaryCDF,but isreturnedin SY Sformrather than CDFform.

Bernoul | i SYS[rde[2,t]]

{{01 1_E721}1 {11 EiZt}}

m UniformDiscreteSY §n]

Thisfunctionwill returnthe multistateSY S systemfor a discreterandomvariablewhichhasn
discreteoutcomes, each of whichis equally likely, and wherethe eventsare evenly spacedin [0,1].

Uni f or nDi scret eSYS[5]

{o. 1 {5 2} (& 2 1%

ol =
——
——
=
ol =
[—
——

= BinomialSY gn,p]

Thisfunctionwill returnthe multistate SY S systemfor a discreterandomvariablewiththe
Binomial distribution, wherethe stateshavebeen mappedinto [0,1].

Bi nomi al SYS[5, 1/ 3]

32 1 80 2 80 3 40 4 10 1
o wmgh 5 =) (5 =z (5 z3)h {5) (U o3l

= HypergeometricSY §n,nsucc,notot]

Thisfunctionwill returnthe multistate SY S systemfor a discreterandomvariablewith the
Hypergeometri cdistribution (parametersn, nsucc, notot), wherethe states have been mappedinto
[0,1].

Hyper geonetri cSYS[2, 3, 5]

{fo. i} {7 2+ (&

= FnEstimate[list]

Thisfunctionwill returnthe SY S multistatesystemwhichis empiricallyfound based on thelist of
datacontainedin list. Theresultingsys systemcan then be used as a sysmatrix, or passedto
MultistateCDF[x,sys] to form atrue CDF.

list = Tabl e[Randon{], {100}];

enpcdf = MultistateCDF[x, FnEstimate[list]];

Pl ot [enpcdf // Evaluate,{x,-0.2,1.2},
Pl ot Label - >"Enpirical CDF",
AxesLabel ->{"x","F[x]"}, PlotRange->{0, 1}]

Fx] Enpirical CDF
1,
0.8¢
0.6

0.4

0.2

-0.2 0.2 0.4 0.6 08 1 1.2
- Graphics -
Thefollowingis an exampleof how onewould createa multistatesystemwhichis based on time

based datatakenover time. Thedataisin theform of the state of each of a seriesof itemson test
inonelist, with onelist every timeinterval dt for the durationof thetest.
TestSYS[t_ /; Nunber@t]] := Wth[{
test={{1, 1, 1}, {0.8, 0.9, 0.7},
{0.6, 0.6, 0.5}, {0.3, 0.4, 0.2}},
dt =1/ 2},
FnEstimate[test[[Floor[t/dt]+1]]]]

sys5 = Test SYS[t];
Onewouldinvokethis constructionin a manner as follows:

sysb /. t->1

= FnEstimateVar([list]

Thisfunctionwill returnthe varianceof the FnEstimateestimateof arandomvariableX, based on
the input of n sampledatapoits to FnEstimate. Itisan upper bound, independent of x.

FnEstimateVar[list]

L
400

m CustomerLimitsGamma[mx:1/2,a:0, b:m]

Thisfunctionwill returnthe pair of argumentswhich should be passedto GammabDistribution,if
onewishesto havea distributionwith modem and the fractionx of thetotal areaunderneaththe
PDF curveto lie betweenb anda. Themotivationhereisthat, in creatingU[t] lifetimeweighting
functions, it would be more natural for the customerto specify the modethan the meanfor the
function (whichis assumedto takethe form of somePDF). For most PDFs, knowingthe mode
uniquely specifiesthe necessary parametersfor the distribution. However, thisis not the casefor
the Gammaand Weibull distributions(for example). To pin downall the parametersin these
cases, thesefunctionswill allow the customerto specify the modeas well as CDF valueat some
point. Anoptimizationroutinethen attemptsto discover the appropriateparameters. Notethat it
is possibleto specify problemsfor whichthereis no feasiblesolution.

Cust oner Li m t sGanma[8, 0. 37]

(4.92397, 2.03875 }

Pl ot [PDF[GarmaDi st ri buti on[4. 92397, 2. 03875], X],
{x, 0,12},
Pl ot Label - >" GanmaDi stri buti on[4. 92397, 2. 03875] ",
AxeslLabel ->{"x","F[x]"}]

FIX] GanmaDi stribution[4.92397, 2. 03875]

- G aphics -

m CustomerLimitsWeibull[mx:1/2,a:0, b:m]

Please see CustomerLimitsGamméor further discussionof thisfunction. Thisfunctionconsiders
the Weibull distributionrather than the Gamma, but in all other respectsisthe same. Pleasekeep
in mind againthat it is possibleto specificinfeasibleparametersto this function.

CustonerLimtsWeibull[2. 16, 0.027, 0, 1/2]

(1.18271, 10.4775}

Pl ot [PDF[Wi bul | Di stri bution[1.18271, 10. 4775], x],
{x, 0,4},
Pl ot Label ->"Wei bul | Di stri bution[1.18271, 10. 4775]",
AxeslLabel ->{"x","F[x]"}]
FIX] i bul | Di stribution[l.18271, 10. 4775]

0.07¢

0.06 ¢

0.05¢

- G aphics -

Alongthelinesof discussinghow to formdifferenttypesof U[t] functions,thefollowingisan
illustrationof how onewould createa U[t] functionwhichisamixtureof avariety of CDF sand
displacementsof CDF's. Notethat the last PDF in the set of threethat define CustomerUis shifted
to theright by threetimeunits. Buildingfunctionsin thisway isagoodway to accountfor cyclic
and projected demands.

CustonerUt_] := (TriangularPDF[t,5,4,7] +
PDF[Uni fornDi stribution[O0,3],t] +
PDF[GarmaDi stri bution[2,2],t-3])/3

Plot[Custonmer U t],{t,0, 18}, Pl otLabel ->"CustonerUt]",
AxeslLabel ->{"t",""}]

Cust orrer U[t]

0.25;

0.2

0.15¢

0.05¢

25 5 7.5 10 12.5 15 17.5

- G aphics -

NI ntegrate[CustonmerUt], {t, 0, Infinity},
Accur acyGoal - >3]

1. 00006

The Measures Package

m General Commentsand Definitions

This packagecontainsfunctionswhichwill calcul atevariousreliability measuresbased on

informati onabout the stochasti cbehavior of the systemor componentunder consideration. Some
functionsaccept thisinput in theform of "SY S" matrices(for discretesystems), and somefunctions
acceptthisinputin the formof "CDF" functions(for continuousand mixed systems, and for components
of discretesystemsthat are specifiedby CDF only so asto retainfull generality should other
componentsbe non-discrete). Asit isclear fromtheinformationin the parameterlist for each function
whetherit is exclusivelydiscreteor not, thiswill not generally be commentedon in the documentation

far aarh fiinctinn

Asusual, SY Sisin theform{{phi_0, P[phi=phi_0]} ,{ phi_1, P[phi=phi_1]},..., { phi_M,
Pphi=phi_M]}. Asusual, it is assumedthat noneof of the phi_i arethe same, and that they aregiven
(withtheir associated probabilities)in ascendingorder (i.e. they arelisted fromworst to best from the
point of the customer). Asusual, both SY Smatricesand CDF smay be functionsof time, and thereare

many dynamicmeasuresin this packagethat integrateor similarly consider the changing behavior over
time

Thereare only two functionsin this packagewhich do not takeeither SY Sor CDF asinput. Thefirst
is ContinuousEntropy,whichtakestakesa PDF and is valid only for completely continuous
distributions. Thesecondis ChebyshevUB,does not use distributionsof any kind (only the variance
information).

Many of thediscretefunctionsinvolvingintegrationallow the user to passthe functionin questiona
final parameterni, whichmust be either Trueor False. If the parameteris Falseor omitted, then the
regular symboliccal culationis attempted. If only anumerical result is desired, then much computation
time can be saved by settingthisvaueequal to True.

One point should be madequite strongly. When one may specify the distributionof a componentor
systemthroughits CDF in this package, one may passa CDF whichis mixed (i.e. has both continuous
and discretebehavior, and appearsas a continuousCDF with periodic"jumps’ at the pointsof dicrete
behavior). Thiswasdeemedimportantto the study of continuoussystems, as by smplereasona

systemwhichis non-repairableshould havea growing, non-zeroprobability of beingin its minimal
ctate

Please note that these measureswill operateon any list of states/probabilities(for SY Sinput) or
CDF (for CDFinput). Whether those probabilitiesand statesare statesof a system, or statesor

subsystems, or statesof components,is mostly immaterial. Whenever onereads"system" in this
document, one coul d think equivalentlyof "subsystem" or "component", as the case may be.

Throughoutthis document, we will makeuse of the sameset of simpleexamplesuponwhichto
demonstratethe use of the different reliability measures. The SY Sexampleis onewherethereare
four distinct statesto the system, rangingfrom 0 (worst) to 1 (best). Thisnon-repairablesystem
beginsat t=0in its best state, and spendsa length of timein each state>0 governedby an
exponential distribution, with parameter|lambda=2, beforemovingto the next lower state.

sys=Syst enmvatri x[Range[0, 3]/ 3, PDPEr | angi an[3, 2,t]] //
Sinplify
{{0, E?' (-1+E*' -2t -2t?)}, {i 2E20t?}, {%, 2E2't}, {1, E?'}}
Hereisaplot of the probabilitiesof this systembeingin any one of its states, as afunction of time.
Pl ot [Eval uat e[PDPEr | angi an[3, 2,t]], {t, 0, 3},
Pl ot Label ->"sys P(i,t) plots",
AxesLabel ->{"t" ,"P(i, t)"},
Pl ot Range- >{ 0, 1}]

P(,t) sys P(i,t) plots

1
0.8
0.6¢

0.4

0.2

0.5 1 1.5 2 2.5 3
- G aphics -

A seriesof continuousand mixed distributionswill be defined, so asto haveoneat any giventime
that is appropriatefor the exampleat hand. Thefirstisthe cdf versionof sys, and will be used to
demonstratethat the cdf functionswork equivalentlywith discretesystems.

cdfmult = MultistateCDF[x, SystenVatri x[Range[0, 3]/ 3,
PDPEr | angi an[3,2,t]]11;

Plot[{cdfrult /. t->1 // Evaluate, {x, -.2, 1.2},
Pl ot Label ->"cdf mult F(x,1) plot",
AxeslLabel ->{"x","F(x,1)"},
Pl ot Range- >{ 0, 1}]

F(X, 1) cdfnult F(x,1) plot
1,

0.8

0.6¢

0.4

0.2}

-0.2 0.2 0.4 06 08 1 1.
- G aphics -
cdf beta = CDF[BetaDi stri bution[10, 2], x];
Pl ot [cdf beta, {x, 0, 1},
Pl ot Label ->"cdf beta F(x) plot",
AxesLabel - >{"x","F(x)"},
Pl ot Range- >{ 0, 1}]
F(x) cdf beta F(x) pl ot
1 -
0.8

0.6

0.2}

- Graphics -

Pl ot [PDF[Bet aDi stri buti on[10, 2],x], {x, 0, 1},
Pl ot Label - >"pdfbeta f(x) plot",
AxesLabel ->{"x","f(x)"}]

f(x) pdf beta f (x) pl ot
4!
3,
2,
1,
: : X
0.2 0.4 0.6 0.8 1
- Graphics -

Notethat cdfbetais a purely continuousdistribution, that naturally hasthe range[0,1]. It hasthe
followingPDF:

pdf beta = PDF[BetaDi stri bution[10, 2], x]

110 (1 -x) x°

Now, wewishto defineamixeddistribution. Let us consider anormal distributionthat is
truncatedto lie withinthe range[0,1].

cdf t nor m=Truncat edCDF[x, Nornmal Di stri bution[5/6,1/10]];

Plot[cdftnorm {x, 0, 1},
Pl ot Label - >"cdftnorm F(x) plot",
AxeslLabel ->{"x","F(x)"},
Pl ot Range- >{ 0, 1}]

F(x) cdftnorm F(x) plot
1,
0.8
0.6

0.4

0.2

- G aphics -
Now, let’ sdefineamixed, dynamicdistribution.

cdftnormd =
Truncat edCDF[x, Normal Di stri bution[E*(-t), 1/10]];

Pl ot 3D cdf t nornd, {x, 0,1}, {t,O0, 3},
Pl ot Label ->"cdftnornmd F[x,t] plot",
AXeSLabel _>{ IIXII, lltll, " II}]

cdftnornmd F[x,t] plot

- SurfaceG aphics -

m Function Documentation

m ExpectedFnState]sysf]

Thisfunctionwill returnthe expectedvalueof afunctionf of the state of the syssystem.

First, let’ sdefinethe transformationfunctionf.

f[x_] := Log[x"3+1]/Log[2]

Plot[f[x], {x, O, 1},
Pl ot Label ->"f[x] Transformation Plot",
AxesLabel - >{"x","f[x]"}]

f[x] f [x] Transformation Pl ot
1,

0.8
0.6
0.4

0.2

- Graphics -

ansl=ExpectedFnState[sys,f] // Sinmplify

E2?' (2t?Log[2]+2t Log[2] +Log[2])
Log [2]

Pl ot[ans1, {t, 0, 2},
Pl ot Label - >" Expect edFnSt at e[sys, f]",
AxesLabel ->{"t",""}]

Expect edFnSt at e [sys, f]

- Graphics -

ansl /. t->1// N

0. 250875
Thismay be comparedto the simpleexpectedvalue of the state of the system (see ExpectedState]])

To calculatethe equivalentvaluefor the mixed case, use the function Stieltjesl ntegral[f,cdf, { x,
min, max}]. To calculatethe equivalentvaluefor the absol utely continuouscase when the PDF
g[x] isavailable,use Integrate[f[x] g[x], { X, -Infinity, Infinity}], or NIntegratefor a numerical
approximation.

Stieltjesintegral [f[x],cdfmult /. t->1,{x}, 3]

0. 251092

m ExpectedState]sys]

Thisfunctionwill returnthe expected state of the system. It hasthe range[min,max].

ans2=ExpectedState[sys] // Sinplify

%E’Zt (3+4t +212)

Plot[ans2, {t, 0, 4},
Pl ot Label - >" Expect edSt at e[sys] ",
AxesLabel ->{"t",""}]

Expect edSt at e [sys]

- Graphics -

ans2 /. t->1// N

0. 406006

m CDFExpectedState]cdf,x, max:1]

Thisfunctionwill returnthe expected state of the system. It hasthe range[min,max]. Itis
assumedthat systemstate val uesare non-negative.

CDFExpectedState[cdfmult /. t->1, X]

0. 406006

CDFExpect edSt at e[cdf bet a, x]

0. 833333

m ExpectedOutput[syst,tstar,ni:False]

Thisfunctionwill returntheintegral of the expected state of the systemover the product’ suseful
lifetimetstar. ni istheflagfor Numerical Integration(vs. Symboliclntegration,as mentionedat

the beginningof this document). This measurehasthe range[min*tstar, max*tstar].

ans3=Expect edQut put [sys, t,tstar]

1—%E’2‘S‘a’ (3+3tstar +tstar?)

Pl ot[ans3, {tstar, 0, 4},
Pl ot Label - >" Expect edQut put [sys, t,tstar]",
AxesLabel ->{"tstar",""}]

Expect edQut put [sys,t,tstar]

0.8

0.6

0.4

0.2

tstar

- Graphics -

ans3 /. tstar->1// N

0.684218

» CDFExpectedOutput[cdf x, t, tstar, max:1]

Thisisthe equivalentof ExpectedOutputusing the cdf. Calculationof this measurecan take
significantamountsof time (especiallyfor multistateCDFs), so if the componentor systemin
guestionisindeed discrete, convertingit to a SY S matrix and using ExpectedOutputwould be
preferable(thoughnot TECHNICALLY necessary).

CDFExpect edQut put [cdf t nor nd, x, t, 1]

0.629473

Pl ot [CDFExpect edQut put [cdftnornd, x, t, tstar],
{tstar, 0, 1},
Pl ot Label - >" CDFExpect edQut put [cdftnornd, x, t, tstar]",
AxesLabel ->{"tstar",""}]

CDFExpect edQut put [cdf t nornd, x, t, tstar]

tstar

0.2 0.4 0.6 0.8 1

- G aphics -

m ExpectedTotalOutput[sys;t,ni:Falsg]

Thisfunctionreturnsthe integral of the expectedstate of the systemover all time. Itisthevaue
which ExpectedOutputapproaches. Notethat this measurewill divergefor systemswhichare
reparairableand have a non-zerosteady-state, or for systemswhichhaveanon-zerominimum
state.

Expect edTot al Qut put [sys, t]

1

m CDFExpectedT otal Output[cdf,x,t,max:1]

Thisfunctionis the equivalent of ExpectedTotal Output,but usesthe CDF. Calculationof this
measurecan requireconsiderableamountsof time.

= VarianceOfOutputUB[syst,tstar,ni:Falsg]

Thisfunctionwill find the expressionfor the upper bound (using the Schwartzinequality) of the
varianceof theintegral of the state of the systemfromtime0 to timetstar. ExpectedOutputwas
the mean, rather than the variance, of this samevalue.

Vari anceCf Qut put UB[sys, t, 1/ 8, Tr ue]

0. 000219637

Pl ot [Vari anceO Qut put UB[sys, t, tstar, True],
{tstar, 0, 10},
Pl ot Label - >"Vari anceCf Qut put UB[sys, t, tstar, True] ",
AxeslLabel ->{"tstar",""}]

Vari anceOf Qut put UB[sys, t,tstar, True]

0.8¢

0.6

0.2

tstar

- G aphics -

m CDFVarianceOfOutputUB[cdf x, t, tstar, max: 1]

Thisfunctionis the equivalentof VarianceOf OutputUBin the mixed case.

CDFVar i anceOr Qut put UB[cdf t nornd, x, t, 1/ 4]

0. 000478785

= Upper StatesProbability[sys,j]

Thisfunctionwill return the probability of beingin a state greater than or equal toj. Notethat this
is not necessarily equal to 1-F[x] in the case of mixed systems.

Upper St at esProbability[sys,1/3] // Sinmplify

E2' (1+2t +21t2)

(Upper St at esProbability[sys, #] & / @
Transpose[sys][[1]]) // Sinplify

{1, E?' (1+2t +2t2), E2' (1+2t), E?')

Upper St at esProbability[sys,1/3] /. t->1

5
=

m CDFUpper StatesProbability[cdf,x,j]

Thisfunctionis the equivalentof UpperStatesProbabilityfor cdfs.

CDFUpper St at esProbabi lity[cdfbeta,x,7/8] // N
0. 40808

CDFUpper St at esProbabi lity[cdfmult /. t->1,x, 1/ 3]

5
E?

m StateDwel I Timeg[sysit,j,ni:False]

Thisfunctionreturnsthe timethe systemis expectedto remainin the given state, assumingno
cutoff time. Thismeasuremay divergefor repairablesystems, and for the minimal state of
non-repairablesystems.

St at eDwel | Ti me[sys, t, 1]

1

2

Prepend[(StateDwel | Ti ne[sys,t,#]& / @
Transpose[sys][[1,{2,3,4}]]).Infinity]

1 1 1
o 30 70 7}

Notethat, as expected, thismeasurediverges for thelowest state of this non-repairablesystem.

s CDFStateDwe I Time[cdf x, |, t]

Thisfunctionis the equivalentof StateDwellTimefor CDFs.

CDFSt ateDwel | Tine[cdf mul t, x, 1, t]

0.5

m StateVariance[sys|

Thisfunctionwill returnthe varianceof the systemstate.

StateVariance[sys] // Sinplify

1

gE"“ (9 (-1 +E2') +8 (-3 +E2')t +2 (-14 +E2')t2-16t3-41t%)

Pl ot [StateVari ance[sys], {t, 0, 5},
Pl ot Label - >" St at eVari ance[sys] ",
AxesLabel ->{"t",""}]

St at eVari ance [sys]
0.12¢

0.1
0.08¢
0. 06

0. 04

- Graphics -

The customer may be interestedin the point in time at whichthe systemvarianceis at a maximum.
Thismay be easily found:

t /. FindMninmunf-StateVariance[sys],{t,0}][[2]]

0. 898822

StateVariance[sys /. t->1] // N

0. 120867

m CDFStateVariance[cdf x, max:1]

Thisfunctionisthe equivalentof StateV ariancefor CDFs.

CDFSt ateVari ance[cdfnult /. t->1, X]

0. 120639

= LifetimeWeighted[syst, u, utotal:1, ni:False]

Thisfunctionreturnsthe lifetime-weightedreliability measure, given sys and the timeweighting
functionU[t]. utotal isthevalueof theintegral of U[t] from0to Infinity. Notethat lifetime
weightingmeasuresthat expect this (non-repairable)systemto performwell at largevaluesof t
producesmaller reliability measures, accordingto this scheme.

Plot[pdu[1,t], {t, O, 1.2},
PI ot Label ->" pdu[1’ t] n ’
Axeslabel ->{"t",""}]

pdufl,t]

0.8¢

0.6¢

0.2 0.4 06 0.8 1 1.2
- Graphics -
Li feti neWei ghted[sys, t, pdu[l,t], 1, True]

0. 684218

Plot[pde[2,t], {t, 0, 2}, PlotLabel->"pde[2,t]",
AxeslLabel ->{"t",""}]

pde[2,t]

2
1.5¢

1,
0.5

: : : — t
0.5 1 1.5 2

- G aphics -

Li feti neWei ghted[sys, t, pde[2,t], 1] // N

0. 708333

In thiscase, a general solution may be obtai ned.

Li feti meWei ghted[sys, t, pde[lanbda,t], 1] // Full Sinplify

| ambda (24 + 16 | anbda + 3 | anbda?)

If [Re [lanbda] > -2, .
3 (2 +lanbda)

J E'am™dat | anbda (E2' + %E’Z‘ t o+ %E’Z‘ t2) dt |

0

Plot[pdin[3,1,t], {t, O, 50}, PlotLabel->"pdIin[3,1,t]",
AxeslLabel ->{"t",""}]

pdln(3,1,t]

0.03}
0.025;
0.02}

0. 015

0. 005

10 20 30 40 50
- G aphics -

Li feti meWei ghted[sys, t, pdin[3,1,t], 1, True]

0.00414178

Notethat our measurefor Reliability (and hence customer satisfaction)is much lower for this
weightingfunction. In general, the conceptis that the weightingfunction U[t] should be
proportional to thelevel of customerinterestin the product (and hence, the degreeto which
performanceof the product at that each point in time has the capacity to impact the customer’ dife
and satisfactionwith the product). TheLogNormal curveaboveimpliesthat the customerwill be
significantlyaffected by the behavior of the product at timesfar in thefuture. Sincethissystemis
non-repairable,and haslow expected system statesfor largevaluesof time, it receivesa very small
valueof thelifetimeweightingfunctionunder that scheme. TheweightingfunctionsUniformand
Exponential indicate (respectively)zero and very low levelsof customerinterestin the product at
largevaluesof t. Thelifetimewelgtingfunctionsare much greater for those values(notethat the
maximumis 1, so these measuresindicate 70% of the customer satisfactionthat would be attained
if the product never left its maximal state). In general, any of the functionsthat beginwith alower
case"p" that aredefinedin the Distributions' packagewoul d be good choicesfor U[t] functions,
asthey are all non-negativeand are defined over therange[O, Infinity]. They will also all havea
utotal of 1, so that need not be calculated. Additionally,the LifetimeWeightingmeasurehasan
additional interpretation in cases(such asthis) whenthe U[t] functionisthe PDF of arandom
variable.

m CDFLifetimeWeighted[cdf x, t, u, utotal:1, max: 1]

Thisfunctionisthe equivalentof LifetimeWeightedfor CDFs.

CDFLi f eti neWei ghted[cdf beta, x, t, pdu[l,t]]

0. 833333

» StateProbability[sys,j]

Thisfunctionwill returnthe probability of beingin statej asafunctionof time.

(StateProbability[sys, #]& /@
Transpose[sys][[1]]) // Sinplify

{E2' (1 +E2' -2t -2t2), 2E2't2, 2E2't, E2'}

StateProbability[sys /. t->1,1]

1
=3

m CDFStateProbability[cdf x, x0:1]

Thisfunctionisthe equivalentof StateProbabilityfor CDFs.

CDFSt at eProbabi lity[cdfrmult /. t->1, X]

1
=

m Upper StatesDwdITimesys;t,j,ni:False]

Thisfunctionreturnsthetimethe systemis expectedto remainin statesgreat than the givenone,
consideringall time. See StateDwell Timefor moreinformation.

Upper St at esDwel | Ti me[sys, t, 3/ 4]
1

2

(Upper St at esDwel | Ti me[sys,t, #] & / @
Transpose[sys][[1]]) // Sinplify

——

w
N

| =
o
e

?1 ’ 21

m CDFUpper StatesDwelITime[cdf X, |, t]

Thisfunctionis the equivalentof UpperStatesDwell Timeor CDFs.

CDFUpper St at esDwel | Ti mre[cdf nul t, x, 3/4, t]

0.5

» L ower StatesProbability[sys,]

Thisfunctionwill return the probability of beingin a statelower than the givenone as afunction
of time. Notethat thisisNOT equal to the CDF.

(Lower St at esProbability[sys, #] & / @
Transpose[sys][[1]]) // Sinplify

{0, E2' (-1 +E2' -2t -21t2), E2' (-1 +E*' -2t), 1-E2%}

Lower St at esProbabi lity[sys, 3/4]

1 _E—Zt

m CDFL ower StatesPraobability[cdfx, j]

Thisfunctionwill return the probability of beingin a statelower than the givenone as afunction
of time. Notethat thisisNOT egual to the CDF.

CDFLower St at esProbabi lity[cdfmult, x, 3/4]

1 _E—2t

= RangeStatesProbability[sysj, k]

Thisfunctionwill returnthe probability of beingin any state below or equal to k, but abovej,
wherej<k.

RangeSt at esProbabi l ity[sys, 0, 2/3]

2E?'t +2E2t 2

» CDFRangeStatesProbability[cdfx, j, K]

Thisfunctionis the equivalent of RangeStatesProbabilityfor CDFs.

CDFRangeSt at esProbabi lity[cdfmult, x, 0, 2/3]

2E2't +2E2t¢t?

m ExpectedL ostOutput[syst, tstar, ni:False]
Thisfunctionwill return min* tstar-ExpectedOutput[sysit,tstar].

Expect edLost Qut put [sys, t, tstar]

-1 +tstar +%E’2‘S‘a’ (3+3tstar +tstar?)

Pl ot [Expect edLost Qut put[sys, t, tstar], {tstar, 0, 10},
Pl ot Label - >" Expect edLost Qut put[sys, t, tstar]",
AxesLabel ->{"tstar",""}]

Expect edLost Qut put [sys, t, tstar]

tstar

2 4 6 8 10

- Graphics -

m ExpectedScaledOutput[sys;t,tstar,ni:False]
Thisfunctionwill return ExpectedOutput[sys,t,tstar]/tstar.

Expect edScal edQut put[sys, t,tstar]

1- L E?'sta (3+3tstar +tstar?)
tstar

Pl ot [Expect edScal edQut put [sys, t,tstar], {tstar, 0, 10},
Pl ot Label - >" Expect edScal edQut put [sys, t,tstar]",
AxesLabel ->{"tstar",""}]

Expect edScal edQut put [sys, t, tstar]

tstar

- Graphics -

» CDFExpectedScaledOutput[cdfx, t, tstar, max:1]

Thisfunctionisthe equivalent of ExpectedScal edOutputfor CDFs.

CDFExpect edScal edQut put [cdf t nornd, x, t, 1]

0.629473

m StateStandardDeviation[sys]

Thisfunctionreturnsthe standard deviationof the state of the system.

St at eSt andar dDevi at i on[sys]

8 2 4 2 2
-2t -2t -2t 2 _ -2t -2t -2t 2
\/E tg B2t g E2UL (E tg B2t S E2UL

Pl ot [St at eSt andar dDevi ati on[sys], {t, 0, 5},
Pl ot Label - >" St at eSt andar dDevi ati on[sys] ",
AxesLabel ->{"t",""}]

St at eSt andar dDevi ati on[sys]

0.35¢
0.3}
0.25;
0.2
0.15]
0.1}

- Graphics -

» CDFStateStandar dDeviation[cdf x, max:1]

Thisfunctionisthe equivalentof CDFStateStandardDeviatiorfor CDFs.

CDFSt at eSt andar dDevi at i on[cdf bet a, x]

0.103362

m ExpectedSquar edSystemState]sys]

Thisfunctionreturnsthe expectedvalue of the squareof the systemstate. To calculatethisfor
CDFs, usethe function CDFMoment[cdf x, 2, max].

Expect edSquar edSyst enfst at e[sys]

E-2t +%E721 t o+ %E’Zt t?

Pl ot [Expect edSquar edSyst entSt at e[sys], {t, 0, 3},
Pl ot Label - >" Expect edSquar edSyst entt at e[sys] ",
AxesLabel ->{"t",""}]

Expect edSquar edSyst entSt at e [SyS]

0.5 1 1.5 2 2.5 3
- Graphics -

» DerivativeOfL SP[syst, j]

Thisfunctionreturnsthetime derivativeof the lower states probability function, for statej.

(DerivativeOLSP[sys, t, #]& /@
Transpose[sys][[1]]) // Sinplify

{0, 4E2't2, 4E2't, 2E2Y}
DerivativeO LSP[sys, t, 1]

2 E72t

Pl ot [Eval uat e[Deri vativeOrLSP[sys, t, 1]], {t, 0, 3},
Pl ot Label - >"DerivativeOfLSP[sys, t, 1]",
AxesLabel ->{"t",""}]

DerivativeOFLSP[sys, t, 1]

1.5}

0.5 1 1.5 2 2.5 3
- Graphics -

m CDFDerivativeOfL SP[cdf x, j, t]

Thisfunctionisthe equivalentof DerivativeOfL SPfor CDFs.

CDFDerivativeOrLSP[cdfmul t, x, 2/3, t]

4 E2t ¢

» DegradationRate[sysit,j]

Thisfunctionwill returntherate of degradationfrom states higher than or equal to j to stateslower
thanj. Pleaseseealso Hazardand CDFHazard, which may be of moregeneral valuethan this
function.

(Degradati onRate[sys,t,#]& / @
Transpose[sys][[1]]) // Sinplify

412 4t
{O, 1+2t+2t2’ 1+2t° 2}

Degradati onRate[sys,t,2/3] // Sinplify

4t
1+2t

Pl ot [Eval uat e[Degr adati onRat e[sys, t, 2/3]], {t, 0, 3},
Pl ot Label - >" Degr adati onRat e[sys, t, 2/ 3] ",
AxesLabel ->{"t",""}]

Degr adati onRat e[sys,t,2/3]
1.75;

1.5¢

1.25;

0.75¢
0.5}

0.25¢

0.5 1 1.5 2 2.5 3
- Graphics -

m Hazard[syst,]]

Thisfunctionwill return, for non-repairablesystemsand components, the rate of passinginto or
below state giventhat the systemis abovestate| at timet.

(Hazard[sys, t, #]& /@
Transpose[sys][[1,{1,2,3}]]) // Sinplify

{ 412 41 2}
1+2t+2t2’ 1+2t°

Notethat this measuredoes not exist for the maximal state, asthereis no state abovethe maximal
state. Notethat Hazard[sys,t, 1/3] = DegradationRate[sys,t,2/3].
Hazard[sys, t, 1/3] // Sinplify

_4t
1+2t

Pl ot [Eval uat e[Hazard[sys, t, 1/3]], {t, 0, 3},
Pl ot Label - >"Hazard[sys, t, 1/3]",
AxesLabel ->{"t",""}]

Hazard[sys, t, 1/3]
1.75¢

1.5;

1.25¢

0.75¢
0.5¢

0.25¢

0.5 1 1.5 2 2.5 3
- Graphics -
Hazard[sys, t, 1/3] /. t->1// N

1.33333

m CDFHazard[cdf,x, xOr, t, tOr, prec: $M achinePr ecision]

Thisfunctionis the equivalentof Hazardfor CDFs. Itisfor level xOr of functioningand at time
tOr. Greater precisioncan be obtained by increasing$M achinePrecisionaboveits
machine-dependentval ue (commonly16). Analternativeversionof thisfunction, CDFHazardB,
is available, which uses Mathematica ©wn numerical differentiationroutines. In all other
respectsit isthe same. Testsseemto favor CDFHazardover CDFHazardBfor al reliability
problemsattempted.

CDFHazard[cdf mul t, x, 1/3, t, 1]

1.3333

Thisfunctionwill producethe ordinary binary Hazard function as a special case. Todo this, xOr
should be set to 0, and cdf should be a binary cdf wherethe probability of beingin state 1 is equal
to the probability of the systemyou are consideringbeingin state 1.

hazsys=Bi nar yCDF[x, rde[5,t]];

Pl ot [CDFHazar d[hazsys, x, 0, t, tOr],{tOr, 0O, 5},
Pl ot Label - >"Exponenti al Bi nary Component, | anbda=5",
AxesLabel ->{"t","h(t)"},
Pl ot Range- >{ 0, 10}]

h(tExponenti al Binary Component, |anmbda=5
10,

- G aphics -

m DerivativeOfExpectedState]sysit]

Thisfunctionreturnsthe derivativeof the expected state of the system.

DerivativeOf Expect edState[sys,t] // Sinplify

—%E’zt (1+2t +21t2)

Pl ot [Eval uat e[Deri vati veCf Expect edSt at e[sys, t]],
{t, 0, 3},
Pl ot Label - >"Derivati veOX Expect edSt at e[sys, t]",
AxeslLabel ->{"t",""}]

Derivati veOf Expect edStat e [sys,t]

0.5 1 1.5 2 2.5

- G aphics -

Asonewould anticipate, for this non-repairablesystemthe rate of changeof the systemstate
approacheszero, as the probability that the system has been trappedin its minimal stateis
increasing.

DerivativeOf ExpectedState[sys,t] /. t->1// N

-0.451118

m CDFDerivativeOfExpectedState[cdfx, t, tOr, prec: $M achinePr ecision]

Thisfunctionisthe equivalentof DerivativeOf ExpectedStatdor CDFs. See also CDFHazard.
Like CDFHazard,this function performsnumerical differentiation,whichis much morerifewith
problemsthan numerical integration. It may be necessaryto increaseprec to obtain good results,
asit wasfor CDFHazard.

CDFDeri vati veOf ExpectedState[cdfmult, x, t, 1]

-0.4620814841871379

s CumulativeStandardDeviation[sysf, tstar, ni:False]

Thisfunctionreturnsthe integral over the system’ suseful lifetimeof the standard deviationof its
systemstate.

Cunul at i veSt andar dDevi ati on[sys, t, 2, True]

0. 57588

Pl ot [Cunul ati veSt andar dDevi ati on[sys, t, tstar, True],
{tstar, 0, 3},
Pl ot Label - >
"Cumul ati veSt andar dDevi ati on[sys, t,tstar, True]",
AxesLabel ->{"tstar",""}]

Cunul ati veSt andar dDevi ati on[sys,t,tstar, True]

e o 8 @ 0o o o0
PN WA O o N

tstar

0.5 1 1.5 2 2.5 3

- Graphics -

» CDFCumulativeStandar dDeviation[cdfx, t, tstar, max:1]

Thisfunctionisthe equivalentof CumulativeStandardDeviatiorfor CDFs.

CDFCunul ati veSt andar dDevi ati on[cdftnormd, x, t, 1/10]

0. 00733575

m SYSF[sys,]]

Thisfunctionwill returnthe probability of the systembeingin or below the statej, givensys.

SYSF[sys, 2/3] // Sinplify

1 _E—Zt

m CDFF[cdf,x, x0:0]
Thisfunctionisthe equivalentof SY SFfor CDFs.

COFF[cdf mul t, x, 2/3]

1 _E—2t

m SYSR[sys,|]

Thisfunctionwill returnthe probability of the systembeing abovethe state .

SYSR| sys, 2/ 3]

E72 t

m CDFR][cdf, x, x0:0]

Thisfunctionis the equivalentof SY SR for CDFs.

COFR[cdf mul t, x, 2/3]

E—Z t

= ChebyshevUBJx,var, epsilon]

Thisfunctionwill return the ChebyshevUpper Bound. var isthe varianceof the randomvariable
in question, muisitsmean. Theexpressionreturnedis the upper bound of the probability that the
randomvariablein questionis epsilon or more units away fromits mean. When only an upper
bound of var isavailable(asin VarianceOf OutputUB) thisinequalityis still valied whenthat
boundisused asinput. Thevariablex isnot used by thisfunction.

ChebyshevUB[1, 1, 2]

1
4

= Moment[sysn:1]

Thisfunctionwill calcul atethe expectedvaueof X”n.
Monent [sys, 6] // Sinplify

721@—52‘ (729 +128t +212)

s CDFMoment[cdf,x,n:1,max:1]

Thisfunctionis the equivalentof Momentfor CDFs. It isthe nth moment (with respectto the
origin) of arandomvariablex givenitscdf. It isassumedthat thisrandomvariableis
non-negetive.

CDFMonent [cdftnormd /. t->1, X, 2]

0. 145335

s CDFMoment[cdf,x,n:1,max:1]

Thisfunctionis the equivalentof Momentfor CDFs. It isthe nth moment (with respectto the
origin) of arandomvariablex givenitscdf. Itisassumedthat thisrandomvariableis
non-negetive.

CDFMonent [cdftnormd /. t->1, X, 2]

0. 145335

» MaximalStateProportion[syst, tstar, ni:False]

Thisfunctionwill find the expressionfor theintegral of probability of the systembeinginits
maximal state, over the system’ suseful lifetimeand divided by the useful lifetime.
Maxi mal St at eProportion[sys, t, tstar]

1 E—2t5tar
2tstar 2tstar

Pl ot [Maxi mal St at eProportion[sys, t, tstar],
{tstar, 0, 3},
Pl ot Label - >" Maxi mal St at eProportion[sys, t, tstar]",
AxeslLabel ->{"tstar",""}]

Maxi mal St at eProportion[sys, t, tstar]

0.5 1 15 2 2.5 3 ustar
- G aphics -

Maxi mal St at eProportion[sys, t, tstar] /. tstar -> 1/8 // N

0. 884797

s CDFMaximal StateProportion[cdfx, t, tstar, max:1]

Thisfunctionwill find the expressionfor theintegral of probability of the systembeinginits
maximal state, over the system’ suseful lifetimeand divided by the useful lifetime.

CDFMaxi nal St at eProportion[cdfmult, x, t, 1/8]

0. 884797

m OnStreamAvailability[syst, tstar, |, ni:False]

Thisfunctionwill returntheintegral of the probability of the systembeing abovestate|j, over the
system’ suseful lifetimetstar and divided by that useful lifetime.

OnStreamAvai l ability[sys, t, tstar, 1/3]

1 Bt (1 +tstar)
tstar tstar

Pl ot [OnSt r eanAvai l abi lity[sys,t,tstar, 1/ 3],
{tstar, 0, 3},
Pl ot Label - >" OnStreamAvai | ability[sys,t,tstar, 1/3]",
AxeslLabel ->{"tstar",""}]

OnStreamAvai l ability[sys,t,tstar, 1/3]

05 1 15 2 as g tstar
0.9/
0.8
0.7
0.6/
0.5
0.4
- G aphics -

OnStreamAvai l ability[sys, t, tstar, 1/3] /. tstar->1// N

0. 729329

m CDFONStreamAuvailability[cdfx, |, t, tstar]

Thisfunctionis the equivalentof OnStreamAvailabilityfor CDFs.

CDFOnStreamAvai l ability[cdfnult, x, 1/3, t, 1]

0. 729329

m DiscreteEntropy[sys)|

Thisfunctionwill returnthe calculatedentropy of the given multistatesysconfiguration. Seealso
ContinuousEntropy.

Di screteEntropy[sys /. t->1]

2 4log[&] (-5+F%) Log[=F]

E2 E2 E2

Di screteEntropy[sys /. t->1] // N

1. 34319

= ContinuousEntropy|[f,x, min:0,max: 1, ni: False]

Thisfunctionwill return the cal culatedentropy of the given PDF (note: NOT CDF) over the given
domain. The domainshould not include setswheref(x)=0.
Cont i nuousEnt ropy[pdf beta, x]

103619
57750 Log [110]
Conti nuousEntropy[pdfbeta, x] // N

-0.962421

m SY SSkewnesy sys)

Thisfunctionwill returnthe skewnessof the given system.

s1=(SYSSkewness[sys] // Sinplify)

(E®' (27 E*' +16 E*' t +2E*" t%+
2 (3+4t +2t%)° “3E' (3+4t +2t2) (948t +2t2)))/

(E%' (9 (-1 +E2') +8 (-3+E2')t +2 (-14+E2')t2-161t%-414))%?

Plot[sl, {t, 0, 5}, PlotLabel->"SYSSkewness[sys]",
AxeslLabel ->{"t",""}]

SYSSkewness [SyS]

-20
- G aphics -

m CDFSkewnesgcdf,x, max:1]

Thisfunctionis the equivalentof SY SSkewnessfor CDFs. For thisfunctionand othersof itstype
(typicallywheremax is an option, but not min), the CDF is assumedto be non-negative.

CDFSkewness|[cdf beta, x]

-0.921401

m SYSKurtosigsys|

Thisfunctionwill returnthe kurtosisof the system.

k1l = (SYSKurtosis[sys] // Sinplify)

(81 (-3 +6E?' —4FE*" +ES') +16 (-81 +108 E2' -39 E*' + 2 E®!) t +
2 (-1620 + 1386 E?' - 248 E*! +E®!) t2 -
32 (153 - 78 E2' + 5 E*') t3 -8 (609 - 165 E2' +2 E*') t4 +
192 (-17 +2 E?') t5+48 (-30 +E2') t5-3841t7-481t8%)/

(9 (-1 +E2') +8 (-3+E21)t +2 (~14+E21)t2-16t%-41t4)7

Plot[k1, {t, O, 5}, PlotLabel->"SYSKurtosis[sys]",
AxeslLabel ->{"t",""}]

SYSKurt osi s [sys]
70
60
50
40
30
20
10}

- G aphics -

m CDFKurtosigcdf,x, max:1]

Thisfunctionis the equivalentof SY SKurtosisfor CDFs.

CDFKur t osi s[cdf beta, x]

3. 78857

m SY SKurtosisExcesysys]

Thisfunctionis the KurtosisExcessof the givensystem. It isjust SY SKurtosis-3,s0 see
SY SKurtosisfor agraph of its behaviorfor this system.

SYSKurt osi sexcess[sys /. t->1] // N

-1.15932

m CDFKurtosisExcess[cdf x, max: 1]

Thisfunctionisthe equivalentof SY SKurtosisExcessfor CDFs.

CDFKur t osi sExcess[cdf beta, X]

0. 788571

m SY SQuantilesys,q:1/2]
Thisfunctionwill return the gth quantileof the multistateconfigurationsys.

SYSQuantile[N[sys /. t->1], 2/3]

0. 666667

sys /. t->1// N

({0, 0.323324}, {0.333333, 0.270671}, {0.666667, 0.270671 },
{1., 0.135335 }}

Pl ot [SYSQuantile[N sys /. t->1], q], {q, 0, 1},
Pl ot Label - >" SYSQuanti |l e[sys,q] (t=1)",
AxesLabel ->{"qg",""}]

SYSQuantile[sys,q] (t=1)

0.2 0.4 0.6 0.8 1
- Graphics -

» CDFQuantilg[cdf,x, q:1/2, prec$M achinePr ecision,min:0, max:1]

Thisfunctionwill returnthe gth quantileof thex. Therearetwo additional functions,
CDFQuantileUpand CDFQuantileDown,that arerelatedto CDFQuantile. Thesearen'’ tintended
to be called directly, but i nstead take multi ple pointsthat meet the quantilecriteriaasthe
supremumand infinimumof that set, respectively,for usein certain other functions.

CDFQuanti |l e[cdf beta, x, 2/3]

0. 892792

m SYSMedian[sys]
Thisfunctionwill returnthe median of the SY Ssystem.

SYSMedi an[N[sys /. t->1]]

0. 333333

s CDFMedian[cdf,x, min:0, max:1]
Thisfunctionwill returnthe median of the CDF system.

CDFMedi an[cdf beta, x]

0. 852037

m SYSQuartileqsys|

Thisfunctionwill returnthe quartilesof the SY S system.

SYSQuartiles[N sys /. t->1]]

{0, 0.333333, 0.666667 }

m CDFQuartilegcdf,x, min:0, max: 1]

Thisfunctionwill returnthe quartilesof the CDF system.

CDFQuartil es[cdf beta, x]

{0.773373, 0.852037, 0.91239}

m SY SQuadraticRaw[sysy0, k:1]

Thisfunctionwill return a sys multistatematrix with the statesreplacedby k (y-y0)*2. Oncethis
systemis constructed, a variety of measuressuch as ExpectedState, StateV ariance, SY SSkewness,
SY SKurtosis,and SY SK urtosi sExcessmay be cal cul ated (theseare all separatemeasuresfor the
CDF case, whichis morecomplicated). Notethat k (y-y0)"2is alossfunction (disutility). By
using k=1 and yO=max, when min=0, thiswill return the raw configurationwhichwould be used
to cal cul ate Boedighei mer’ ssecond measure(see Boedigheimer1992, p. 170).

du=SYSQuadr ati cRaw sys, 1]

=

{{1, E?' (-1+E*' -2t -2t?)}, {%, 2E2't?}, {5, 2E?'t}, {0, E?'}}

g:
Hereare afew measuresof thisdisutility:

ExpectedState[du] // Sinplify

1

~9~E’2‘ (9 (-1+E?') -16t -101t?)

Pl ot [Expect edState[du], {t, 0, 5},
Pl ot Label - >" Expect edSt at e[du] ",
AxesLabel ->{"t",""}]

Expect edSt at e [du]

0.8¢

0.6¢

- G aphics -

StateVariance[du] // Sinplify

1 4t
81 C
(81 (-1 +E?') +32 (-9 +4E2')t + (-436 +50 E2') t2-3201t°%-100t*)

Pl ot [StateVari ance[du], {t, 0, 5},
Pl ot Label - >" St at eVari ance[du] ",
AxesLabel ->{"t",""}]

St at eVari ance [du]

0. 15
0. 125
0.1
0.075

0. 025

- Graphics -

A customer might be interestedin learningwhenthe uncertaintyin the disutility associatedwith
thisproductis at amaximum. That can be determinedquiteeasily.

t /. FindM ninmunf-StateVariance[du], {t, O0}][[2]]

1.14451

s CDFQuadraticM ean[cdf X, y0, k:1, max:1]

Thisfunctionwill returnthe mean of the randomvariablewherethe state consideredis the
functionk (y-y0)*2of the ordinary states. Notethat thisis a quadraticlossfunction (disutility)
such as that commonlyusedin quality studies. A variety of measuresof this quadraticloss
functionwill be detailed here. All contain"Quadratic"in their names, and the type of measure
they represent should be self explanatory.

CDFQuadr ati cMean[cdf beta, x, 1]

0. 0384615

m CDFQuadraticVariance[cdf x, y0, k:1, max: 1]

Thisfunctionwill returnthe varianceof the quadraticlossfunction.

CDFQuadr ati cVari ance[cdf beta, x, 1]

0.00218371

» CDFQuadraticSkewnesscdf x, y0, k:1, max:1]

Thisfunctionwill returnthe skewnessof the quadraticlossfunction.

CDFQuadr at i cSkewness|[cdf beta, x, 1]

2.51602

» CDFQuadraticKurtosigcdf x, y0, k:1, max:1]

Thisfunctionwill returnthe kurtosisof the quadraticloss function.

CDFQuadr ati cKurtosi s[cdfbeta, x, 1]

12. 1641

m CDFQuadraticK urtosisexcesscdfx, y0, k:1, max:1]

Thisfunctionwill returnthe kurtosisexcessof the quadraticlossfunction.

CDFQuadr at i cKurt osi sexcess[cdf beta, x, 1]

9. 16412

» CDFQuadraticK urtosisExcesg[cdfx, y0, k:1, max:1]

Thisfunctionwill returnthe kurtosisexcessof the quadraticlossfunction.

CDFQuadr at i cKurt osi sexcess[cdf beta, x, 1]

9. 16412

m SYSInterquartileRange/sys|

Thisfunctionwill returntheinterquartilerange of the sys multistatematrix.

SYSI nterquartil eRange[N[sys /. t->1]]

0. 666667

s CDFInterquartileRange[cdf x, min:0, max:1]

Thisfunctionisthe equivalentof SY SInterquartileRangefor CDFs.

CDFI nterquartil eRange[cdf beta, x]

0. 139018

= SYSQuartileDeviation[sys]
Thisfunctionwill returnthe quartiledeviationof the multistateconfigurationsys.

SYSQuartileDeviation[N sys /. t->1]]

0. 333333

m CDFQuartileDeviation[cdf x, min:0, max:1]

Thisfunctionis the equivalentof SY SQuartileDeviationfor CDFs.

CDFQuartil eDevi ati on[cdf beta, x]

0. 0695088

m SY SPear sonSkewness2[sys]

Thisfunctionwill returnthe PearsonSkewnessl | of a SY S system.

SYSPear sonSkewness2[N[sys /. t->1]]

0.627101

s CDFPear sonSkewness2[cdf x, min:0, max:1]

Thisfunctionis the equivalentof SY SPearsonSkewness2for CDFs.

CDFPear sonSkewness?2[cdf beta, x] // N

-0.542845

s CDFRandom[cdf,x, n:1, min:0, max:1]

Thisfunctionwill returnarandomsampleof sizen fromthe distributiongivenby CDF[x], which
hasadomainthat is some subset of [min, max].

CDFRandon{ cdf beta, x, 10]

{0.9428785062243037 , 0.7812975148991086 , 0.8322748273326965
0.9387823629323861 , 0.9212966710524029 , 0.8975155394676335
0.8982863206030629 , 0.8518726301001038 , 0.8084652550441547
0.8403898284857974 }

The ContinuousOptimization
Package

m General Comments and Definitions

Thispackageprovidesa seriesof functionsthat can assist in the creationand optimizationof structure
functionsfor continuoussystems. Scattered datainterpolationtechniquesfor continuousstructure
function estimation, and functionsto determineoptimal multistatediscretization,areincluded.

Many of thesefunctionsare best served by havingtheir functionalityillustratedin context. Extended
examplesof the use of many of thesefunctionsare providedin special sectionsat the end of thefunction
definitionssection.

m Function Documentation

» MonteCarlo2[cdflist,x, phi, d:0.1, min:0, max: 1]

Thisfunctionwill returnthe MultistateCDFfor a system, based on alist of CDF sfor the components
(cdflist). x istheindependentvariablein cdflist, phi is the functionrelatingthe component state
vectorsto the systemstate, and d isavaluesuch that p +- d is a 95% confidenceinterval on the
probabilityin question. It isassumedthat the distributionshavea minimumvalueof minand a
maximur value of max. The methoc used is MonteCarlc simulation

We will demonstratethis technique(and the oneto follow) with a systemfor which an exact solution
for the CDFisknown.

phi $Pi [x_] := Times @@x
cdf i st={Uni f or mCDF[x] , Uni f or nCDF[x] };

al=Mont eCarl o2[cdf | i st, x, phi $Pi , 0. 1] ;

Pl ot [Eval uate[{al, x (1-Log[x])}]., {x, 0.0001, 1.1},

Pl ot Label ->"MonteCarl o Sinulation - d=0.1",
Avocl ahal o SI"vy" "ElMv1i"1l1

Fx] Mont eCarl o Sinulation - d=0.1
1,

0.8
0.6
0.4

0.2

0.2 0.4 0.6 0.8 1
- Graphics -
Hereis another approximation,thistimewith moredata points.

a2=Mont eCarl o2[cdf | i st, x, phi $Pi , 0. 05] ;

Pl ot [Eval uate[{a2, x (1-Log[x])}]., {x, 0.0001, 1.1},
Pl ot Label - >"MonteCarl o Si nul ati on - d=0. 05",
AxesLabel ->{"x","F[x]"}]

FIX] MonteCarlo Sinulation - d=0.05
1,

0.8
0.6
0.4

0.2

0.2 0.4 0.6 0.8 1
- Graphics -

m ContDisc[cdflist,x,phi,n:5,min:0,max:1]

Thisfunctionwill calculatethe Multistate CDF for the system, based on thelist of CDF sfor the
components(cdflist). x istheindependent variablein cdflist, phi isthefunctionrelatingthe
componentsto the system, and n is the number of discrete pointsthe systemand components
should be discretizedinto. It is assumedthat the distributionshavea minimumvalueof minand a
maximumvalueof max. Thetechniqueused is discretization,as suggestedby Montero[1990]
(thoughthis author intended this techniqueto be used for structural analysis, rather than stochastic
anayss).

a3=Mul ti st at eCDF[x, Cont Di sc[cdfli st, x, phi $Pi , 20]];

Pl ot [Eval uate[{a3, x (1-Log[x])}]., {x, 0.0001, 1.1},
Pl ot Label - >"Di screti zati on Approximation - n=20",
AxeslLabel ->{"x", "F[x] "}]

FIX] Di scretizati on Approximation - n=20
1,

0.8
0.6
0.4

0.2

0.2 0.4 0.6 0.8 1
- Graphics -

m TruncatedPDF[x,mmadist,min:0,max:1]

Thisfunctionwill returnthe value of the PDF of atruncated mmadist distribution, truncatedto lie
betweenmin and max. Thefunctionthat we usebelow to illustrate TruncatedPDFwill be used to
illustrateother functionslater in thischapter.

pdf 1=Truncat edPDF[x, Normal Di stribution[3/4, 1/8]]

4 32 (7%“)2 \E
L (1+Erf[V2])+ 4 (-1+Ef [34/2])

Pl ot [pdf 1, {x, O, 1}, Pl ot Label - >" pdf 1",
AxesLabel ->{"x","f(x)"}]

f(x) pdf 1

2.5¢

1.5¢

0.5¢

0.2
- Graphics -

= PDFADist[pdf,x,a]

Thisfunctionwill returnthe RM S deviationfrom the discreteval uesfor a continuouscomponent
or system, giventhe PDF for that componentor system. Theindependentvariablefor this
distributionis x, and aisthelist of boundary valuesfor the different discretevalues. The
assumptionhere, as followsinto the related functionssuch as RD, GenAns, etc., is that the
continuousval uesbetweenthefirst two boundary pointsare mappedto the first boundary point,
that continuousval uesbetweenthe last two boundary pointsare mappedto the last boundary
point, and that other adjacent pairsof boundary points map their valuesto a point midway between
them. Thus, the extremaof the continuousmodel areretained.

PDFADI st [pdf 1, x, {0, 1/ 3, 2/ 3, 1}]
0.197518

Please seethe " DetermininingM ultistate Discretizations' section for moreexamplesof the use of
thisfunction.

= RD[pdf,x,n,min:0,max:1]

Thisfunctionwill find the optimal valuesfor the boundariesof the differentlevelsfor a
continuoussystemdiscretizedinto n distinct states, based on minimumvaluesof PDFADistfor the
entiredistribution. Thedistributionis givenby pdf, and theindependentvariableisx. Itis
assumed that the minimal valuefor the PDF is min, and the maximal valueis max.

RDO3[pdf 1, x]

{0.111183, {0, 0.463156, 0.856707, 1}}

Please see the " DetermininingM ultistate Discreti zations' section for more examplesof the use of
thisfunction.

» GenAng[pdf,x,a]

Thisfunctionwill returnatable (in the normal formin which multistatesytemsare given) for the
givenlist of boundaries,a, and the given pdf with independentvariablex.

GenAns[pdf 1, x, {0, 1/ 3, 2/ 3, 1}]

{{0, 0.000439048 }, {%, 0.257931 }, {1, 0.74163}}
Please seethe " DetermininingM ultistate Discretizations' section for moreexamplesof the use of

thisfunction.

= CohlnputQ[data]

Thisfunctionwill check the giveninput dataset to seeif it isnon-decreasing. If itis, Trueis
returned (Falseif not). If the set is not coherent, pairs of numbersare printedto the screenthat
indicatepairs of components(by their order in the original data set) that violatethe non-decreasing
requirement.

inp = {{{0,0},0},{{0,1/2},1/2},{{1/2,0},1/2},
({1/2,1/2},3/4},{{1, 1}, 1}}

{10, 03, 03, {{o. 3} 31 {{5 o} 3} {
({1, 13, 13}

N| =
I\j—‘l—‘
blw

Cohl nput i np]

True

Please seethe " PerformingScatteredand Gridded Data | nterpol ations' section for moreexamples
of theuse of thisfunction.

m ExtremaAdd[data]

Thisfunctionwill checkif the zero vector mapsto 0 and the one vector mapsto 1 in the givendata
set, and addsthem if they arenot.

Ext r emaAdd[i np]

N| =
N\—(’_‘I—‘
Blw

bk ({3 0h 3) {d

N| =

{t10, 0}, 03, {{o,
({1, 13, 13}

Please see the " PerformingScatteredand Gridded Data | nterpol ations' section for moreexamples
of the use of thisfunction.

= Shepard[x,data]

Thisfunctionwill calculatethe approximationto the phi valueat the point x, giventheinput data
set data. If the extremevaluesare not present, they are not added. If the point X is equal to one of
the data points, then the phi valueis equal to the data point’ sphi valueat that datapoint. The
method used is Shepard’ smethod. Shepard’ smethod exhibitsthe property that the valuereturned
for agiven pointis greater than or equal to the minimumof all the givendatapoints, and lessthan
or equal to the maximumof all the givendatapoints.

Shepard[{1/3,1/3},inp] // N

0. 573964

Please see the " PerformingScatteredand Gridded Data | nterpol ations' section for moreexamples
of theuse of thisfunction.

= MultiQuadric[x,data,c,rsqg: (1/6) prec: $M achinePr ecision]

Thisfunctionwill calcul atethe approximationto the phi valueat the point x, giventheinput data
set dataand the constant vector ¢ (calculatedby MultiQuadricC. If the extremevaluesare not
present, they are not added. The methodused is Hardy’ sMultiQuadricmethod, whichis
consideredto be aradial basisfunctionmethod. In general, the best choiceof rsq dependsalmost
exclusivelyon the datafunctionvalues, rather than the distributionof the datasites. Itisalso
nearly indpendent of the number of datapoints. rsg should be smallerfor rapidly varyingdata sets,
and might also needto be small if thereare avery largenumber of datapointsto preventthe
matrix used to solvefor ¢ from beingill-conditioned. Tarwater [1985] showedthat the RM Serror
obtai ned when using this method decreasesas rsq increases, up to some optimal value; beyondthis
value, errorsoftenincreasedramaticallyas the associatedlinear system of equationsbecomes
ill-conditioned. Asrsq approacheszero, the solution becomestighter, asit increases, the solution
becomessmoother. An examinationof RM SError valuesfor random continuoussystemswith
between 10 and 100 data points, using either Min or Max structurefunctions,and with either 2 or
three components, indicatedthat optimal valuesof rsq for thistype of problemare generallyclose
to 1/6; in no case wasthe optimal value of rsq greater than 1/2.

Mil ti Quadric[{1/3,1/3},inp, Multi QuadricCinp]]

0.5486315773404066

Please see the " PerformingScatteredand Gridded Data | nterpol ations' section for moreexamples
of the use of thisfunction, and please see the " DeterminingOptimal RSQ Values' sectionfor a
discussionof selectingoptimal rsg valuesfor thisfunctionand all othersthat acceptrsgasa
parameter.

» MultiQuadricC[data,rsq: (1/6) prec: $M achinePrecision]

Thisfunctionwill calcul atethe constant vector needed for the MultiQuadricroutine.

Mul ti QuadricCinp]

{2.03356, -0.80133, -0.80133, -0.241413, 0.272716 }

Please see the " PerformingScatteredand Gridded Data | nterpol ations' section for moreexamples
of theuse of thisfunction.

= ShepardND[data,m: 5]

Thisfunctionwill returnadataset consistingof approximationsof phi valuesat datapointson a
gridded set with mesh density m. The extremapointsare addedto the customer-supplieddata set
data, if they are not already present. If thereare any customer-supplieddata pointsother than the
minimal or maximal oneswhich haveminimal or maximal phi values(respectively),then any
mesh pointslessthen (or greater than) these are given minimal (or maximal) values. Thegridded
pointsare calculatedin ascendingorder of Euclidiandistancefrom the midpoint of the component
space hypercube, so that central valuesare calculatedfirst. After each pointiscalculated,itis
comparedagainstall pointslessthan or greater than it so that the non-decreasingproperty of
coherent systemsis not violated, and the minimal or maximal valuesallowed are assumed should
the Shepard estimateviol atethe non-decreasingproperty as original ly calculated. Aseach pointis
calculated, it is added to the generatingdata set so that subsequent cal culationsmay useit as part
of the knowledgebase about the system. Notethat one potential modificationof this approach
wouldbeto only consider the datapointsthat whosesites are strictly lessthan or strictly greater
than the given one, and then depend on propertiesof Shepard’ suleto insurethat the resultinggrid
is non-decreasing. Thisapproachwasrejected dueto the possibility of somedata setsbeing very
sparse, and so basing estimatationson very distant points. Also, althoughtwo adjacent but
non-orderedpointsare not required have any order relation betweentheir functionvalues, in
practicenearby pointsare often closein functional val ue.

ShepardND[inp] // N #,2]& // MatrixForn{#, Tabl eSpaci ng->{0}] &

(0.5, 0.5} 0.75
{0.25, 0.5} 0.58
(0.5, 0.25} 0.58
(0.5, 0.75} 0.75
{0.75, 0.5} 0.75
(0.25, 0.25} 0.53
{0.25, 0.75} 0.63
{0.75, 0.25} 0.63
{0.75, 0.75} 0.75

{0, 0.5} 0.5
{0.5, 0} 0.5

(0.5, 1.} 0.75

(1., 0.5} 0.75

{0, 0.25} 0.46

{0, 0.75} 0.59

{0.25, 0} 0.46

{0.25, 1.} 0.66

{0.75, 0} 0.59

{0.75, 1.} 0.75

(1., 0.25} 0.66

(1., 0.75} 0.75

{0, 0} 0
(0, 1.} 0. 63
(1., 0} 0. 63

(1., 1.1} 1.

Please seethe " PerformingScatteredand Gridded Datal nterpol ations' sectionfor examplesof the
use of thisfunction.

= MultiQuadricND[data,m:5,rsq: (1/6),pr ec: $M achinePrecision]

Thisfunctionwill returnadataset consistingof approximationsof phi valuesat datapointson a
gridded set with mesh density m. The extremapointsare added to the customer-supplieddata set
data, if they are not already present. If thereare any customer-supplieddata pointsother than the
minimal or maximal oneswhich haveminimal or maximal phi values(respectively),then any
mesh pointslessthen (or greater than) these are given minimal (or maximal) values. Thegridded
pointsare calculatedin ascendingorder of Euclidiandistancefrom the midpoint of the component
space hypercube, so that central valuesare calculatedfirst. After each pointiscalculated,itis
comparedagainstall pointslessthan or greater than it so that the non-decreasingproperty of
coherent systemsis not violated, and the minimal or maximal valuesallowed are assumed should
the Multi Quadricestimateviol atethe non-decreasingproperty as originally calculated. Aseach
pointiscalculated,it is addedto the generatingdata set so that subsequent cal culationsmay useit
as part of the knowledgebase about the system.

Ml ti QuadricND[inp] // N# 2]1&//
Mat ri xFor n{ #, Tabl eSpaci ng->{0}] &

{0.5, 0.5} 0.75

{0.25, 0.5} 0.62
(0.5, 0.25} 0.62
{0.5, 0.75} 0.85
{0.75, 0.5} 0.85
{0.25, 0.25} 0.41
{0.25, 0.75} 0.78
{0.75, 0.25} 0.78
{0.75, 0.75} 0.9
{0, 0.5} 0.5
(0.5, 0} 0.5
(0.5, 1.} 0.92
(1., 0.5} 0.92
{0, 0.25} 0.23
{0, 0.75} 0.7
{0.25, 0} 0.23
{0.25, 1.} 0.88
{0.75, 0} 0.7
{0.75, 1.} 0.96
{1., 0.25} 0.88
(1., 0.75} 0.96
{0, 0} 0
(0, 1.} 0. 82
(1., 0} 0. 82
(1., 1.1} 1.

Please seethe " PerformingScatteredand Gridded Datal nterpol ations' sectionfor examplesof the
use of thisfunction.

= MLinInt[x,data]

Thisfunctionwill approximatethe value of phi[x], giventhe griddedinput datain the set data
(usual form). It usesalinear interpolation.

m ans = Phi Gri d[Max[#] &, 20, 2] ;

M.inlnt[{1/8,1/8},Mans] // N
0. 137336

Please seethe " PerformingScatteredand Gridded Datal nterpol ations' section for examplesof the
use of thisfunction.

m GriddedRM SError[data,phi]

Thisfunctionwill estimatethe RM S error term of an approximationgiven by the data set data
(whichisin the sameform as the data sets which normally containinput datafor the interpolation
functions) as comparedto the true function phi. The squared differencesfrom the true valuesat all
pointson the grid are summed, thistotal is divided by the number of grid points, and the square
root of thisentireexpressionis returned. The extremaare NOT added.

m ans2 = Phi Gri d[Max[#] & 5, 2] ;

G i ddedRMSEr ror [M ans2, Max|[#] &]

0

Please see the " PerformingScatteredand Gridded Datal nterpolations' sectionfor examplesof the
use of thisfunction.

m ShepardRM SError[data,phi,m:10]

Thisfunctionwill estimatethe RM S error term of a Shepard approximationover a grid of mesh
density m, as comparedto thetruefunction phi. The squared differencesfromthetruevauesat

al pointson the grid are summed, thistotal is divided by the number of grid points, and the square
root of thisentireexpressionis returned. Theinput datapointsaretaken asthe set data, and the
extremaare NOT added.

phi 7[x_] := Max[x]

t est 7=Ext r emaAdd[Randonhi [phi 7, 16]] ;

Shepar dRMSError [t est 7, phi 7]

0. 0867636

Please seethe " PerformingScatteredand Gridded Datal nterpol ations' section for examplesof the
use of thisfunction. Pleasenotethat your result for ShepardRM SErrorwill probably be different
if you recal cul atethis notebook, as RandomPhi is arandomfunction.

= MultiQuadricRM SError[data,phi,m:10,rsq:(1/6),
prec:$MachinePrecision]

Thisfunctionwill estimatethe RM S error term of a MultiQuadricapproximationover a grid of
mesh density m, as comparedto the truefunctionphi. The squareddifferencesfromthetrue
valuesat all pointson the grid are summed, thistotal is divided by the number of grid points, and
the squareroot of thisentireexpressionis returned. Theinput data pointsaretakenasthe set data,
and the extremaare NOT added. See MultiQuadricfor adiscussionof the meaningof thersq
variable, and of prec.

Ml ti Quadri cRVSError[test7, phi7]
0. 025369
Please see the " Performing Scatteredand Gridded Datal nterpol ations' sectionfor examplesof the

use of thisfunction. Pleasenotethat your result for MultiQuadricRM SErrorwill probably be
differentif you recal culatethis notebook, as RandomPhi is arandomfunction.

m PhiGrid[phi,m:4,n:2]

Thisfunctionwill return a set of datapoints, whereeachis of theform{{x11,x12,... x1n} ,phi1}.
The points specifiedby the x coordinatesare those comprisingamesh of density m, and the phii
valuesare determinedby the functionphi. Notethat therewill be m”n datapoints, rather than m.

Phi Gri d[Max[#] & 3, 2]

=

{0, 03, 03, {{o. 3} 3} (0 1 1 ({7 0} 3},
{

{7 7} 2} Uz th 1 caoon 1 ({1 5} 1h (1 1, 1)

Please seethe " PerformingScatteredand Gridded Datal nterpol ations' sectionfor examplesof the
use of thisfunction.

s RandomPhi[phi,m:4,n:2]

Thisfunctionwill returnaset of m data points, whereeachis of theform{{x11,x12,...
x1n},phil}. The pointsspecifiedby thex coordinatesare generatedrandomly, and the phii values
are determinedby the functionphi.

Please see the " Performing Scattered and Gridded Data I nterpol ations' section for examplesof the
use of thisfunction.

RandonPhi [Max[#] & 3, 2]

{{{0. 900006, 0.264095 }, 0.900006 },
{{0.524465, 0.278477 }, 0.524465 },
{{0.202887, 0.640141 }, 0.640141 }}

m RandomGener ate[m:4,n:2]
Thisfunctionwill returnaset of m setsof n random numbers(uniformlydistributed).

Please see the " Performing Scatteredand Gridded Datal nterpol ations' sectionfor examplesof the
use of thisfunction.

Randontener at e[3, 2]

{{0.197711, 0.397095 }, {0.86322, 0.14914 }, {0.239146, 0.0174086 }}

= ShepardGrid[data,m:4]

Thisfunctionwill, givena set of scattereddatapoints(in theform{{{x11,x12,....x1n},phi1},..})
over the component state space, return aregular grid of mesh density m over that space, wherethe
structurefunctionvaueat each point is estimatedwith Shepard’ SMethod. Thevaluereturnedisin
the sameformasdata. The assumptionis madeand utilized that the zero vectorsmapsto 0, and
the one vector mapsto 1.

ShepardGrid[inp] // N#2]&//
Mat ri xFor n{ #, Tabl eSpaci ng->{0}] &

(0, 0} 0
{0, 0.33} 0.44
{0, 0.67} 0.51

(0, 1.} 0.56
{0.33, 0} 0.44

{0.33, 0.33} 0.57

{0.33, 0.67} 0.65
{0.33, 1.} 0.65
{0.67, 0} 0.51

{0.67, 0.33} 0.65

(0.67, 0.67} 0.72
{0.67, 1.} 0.82

(1., 0} 0.56
{1., 0.33} 0.65
(1., 0.67} 0.82

(1., 1.3 1.

Please see the " Performing Scatteredand Gridded Datal nterpol ations' sectionfor examplesof the
use of thisfunction.

m GridGeneratgm:4,n:2]

Thisfunctionwill returnalist containingall the pointsthat make up an evenly spaced grid
spanningthe full rangeof each of the n components. Each componentwill be reducedto m
discretevaluesin thegrid.

G i dGenerate[3, 2]

{10, 03, {o. 3} 0. 13, {5, O}

(1 3} @)

N| =
N| =
*?—‘
—
N| =

.1}, {1, 03,

Please seethe " PerformingScatteredand Gridded Datal nterpol ations' sectionfor examplesof the
use of thisfunction.

m Determining Multistate Discretizations

Althoughthis material wasin essencecoveredin the function documentation,it meritsfurther
considerationand examples.

In essence, we use the function PDFADist to assessthe quality of any particular discretization,
whenthetrue distributionis known. We use the function RD to obtain an optimal discretization.
Bothwill beillustratedhere.

Pleaserefer to the beginningof this chapter for anillustrationand definitionof pdf1, the density
functionthat will be used extensivelyin thissection. It will be takento representthe PDFfor the
state of the componentthat we wishto discretize

We examinevariousdiscretizationsfor this componentbel ow, noting that whilediscretizations
with morelevelsproducebetter results, large differencesin resultscan be obtained with the same
number of levelsby shiftingthe positioningof the boundariesbetweenthelevels. It appearsthat
in this case better resultsare obtained by having moredifferentlevelsavailablein regionswhere
the componentislikely to reside:

PDFADI st [pdf 1, x, {0, 1/ 2, 1}]
0.27871

PDFADI st [pdf 1, x, {0, 1/ 4, 1/ 2, 3/ 4, 1}]
0. 130594

PDFADI st [pdf 1, x, {0, 3/ 8, 5/ 8, 7/ 8, 1}]

0.0732353

PDFADi st [pdf 1, x,{0,3/8,1/2,5/8,3/4,7/8,1}]
0. 0474665
Now, we examinethe optimal discretizationfor atwo-level discretization. Pleasenotethat RD
callsthe M athemati cafunction FindMinimum,which attemptsto find only a LOCAL minimum.
However, examinationsof graphsshowedthat (in all casesconsidered)it wasfindingthe global

minimum. However,if thisis aconcerna global optimizationroutinecould be substitutedfor the
local one.

ans2=RD| pdf 1, x, 2]

(0.27871, {0, 0.5, 1}}

Hereis agraphof the quality of the two-level discretization,as afunction of wherethe boundary
betweenthetwo level swas placed:

Pl ot [PDFADI st [pdf 1, x, {0, x1, 1}], {x1, 0. 45, 0. 55},

Pl ot Label - >" PDFADI st [pdf 1, x, {0, x1, 1}]",
Axeslabel ->{"x1",""}]

PDFAD st [pdf 1, x, {0, x1, 1}]

0. 2805 ¢

x1

0. 46 0. 48 0.52 0.54

0.2795¢

0.279

- Graphics -

Similarly, hereisthe sasmeanalyisfor athree-level discretization. Theblack dot on the graphis
the optimal point found with the RD functionbel ow.

ans3=RD| pdf 1, x, 3]

{0.111183, {0, 0.463156, 0.856707, 1}}

Show Pl ot 30f PDFADi st [pdf 1, x, {0, x1, x2, 1}],

{x1,0, 1}, {x2,0, 1},
Pl ot Label - >" PDFADI st [pdf 1, x, {0, x1, x2, 1}]1",
AxeslLabel - >{"x1","x2",""},
Di spl ayFuncti on->ldentity],

Graphi cs3D[Point[{ans3[[2,2]],ans3[[2,3]],

ans3[[1]]+0. 01}],

Di spl ayFunction->ldentity],

Di spl ayFuncti on->$Di spl ayFuncti on]

PDFAD st [pdf 1, x, {0, x1, x2, 1}]

- G aphi cs3D -
Now, weask for all optimal discretizationsfor numbersof levelsrangingfromtwo to nine

ansi = Table[RD pdf1,x,i],{i,2,9}];

ansi

{{0.27871, {0, 0.5, 1}}, {0.111183, {0, 0.463156, 0.856707, 1}},
{0.0709472, {0, 0.413886, 0.667966, 0.88286, 1}}, {0.0509273,
(0, 0.38246, 0.59957, 0.753086, 0.907553, 1}}, {0.0395751,
{0, 0.357868, 0.555424, 0.680731, 0.799709, 0.926197, 1}},
(0. 0322012, {0, 0.341005,

0.527339, 0.644081, 0.73758, 0.829989, 0.934915, 1}},
(0.0272168, {0, 0.324791, 0.497115,

0.61303, 0.693553, 0.77111, 0.851415, 0.944778, 1}},
{0.0237478, {0, 0.303779, 0.462548, 0.584152, 0. 66529,

0.733302, 0.799706, 0.869726, 0.951824, 1}}}

Hereisachart of how the RM S error goesdown as the number of levelsincreases.

<<G aphi cs‘ G- aphi cs’

Bar Chart[Transpose[ansi][[1]], BarlLabel s->Range[?2, 9],
Pl ot Label - >

"PDFADi st as Fn of # of Optinally Chosen Categories",
AxeslLabel ->{"# Cats.",""},

Pl ot Range- >{ 0, 0. 30}]

PDFADi st as Fn of # of Optinmally Chosen Categories

0. 25
0.2
0.15
0.1
0. 05

— 8 # Cats.

- Graphics -

Finally, we examinethe multistatesystem graphsfor these discreti zations. For each point on these
graphs, the x-val uerepresentsa discrete point whose val ue the discretized component may assume,
thethey-valuefor that point representsthe probability that the componentwill take on that value.
Notethat the plots, as the number of levelsincreases, approachesin appearancethe original PDF.

Plot Ans[pdf _,x_,a_] :=
Li st Pl ot [GenAns|[pdf, x, a],
Pl ot Range->{{0, 1}, {0, 1}},
Pl ot Label - >
"Optimal Discretization for " <>
ToString[Length[a]-1] <>" Categories",
AxeslLabel ->{"x","P(x)"},
Di spl ayFuncti on- >l dentity]

allplots = PlotAns[pdfl,x,#[[2]]1]& / @ansi;
Do[Showf al I plots[[i]],

Di spl ayFuncti on->$Di spl ayFuncti on],
{i,Length[allplots]}]

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

P(Xgptimal Discretization for 2 Categories
1,

8t

6t

2t

P(Xgptimal Discretization for 3 Categories
1,

8t

6t

2t

P(Xgptimal Discretization for 4 Categories
1,

8,
6,
4,

2t

.

0.

2

0.4

0.

6

0.

8

1

0.

2

0.4

0.

6

0.

8

1

0.

2

0.4

0.

6

0.

8

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

P(Xgptimal Discretization for 5 Categories
1,

8t

6t

2t

P(Xgptinal Discretization for 6 Categories
1,

8t

6

2t

P(Xgptinal Discretization for 7 Categories
1,

8t
6
4t

2t

0.2

0.4

.

0.6

0.8

1

.

0.2

0.4

0.6

0.8

1

0.8

X

0.

0.

0.

0.

P(Xgptinal Discretization for 8 Categories
1,

8,
6,
4,

2t

0.8

P(Xgptimal Discretization for 9 Categories
1,

0.8¢

0.6

0.2

0.2 0.4 0.6 0.8 1

m Performing Scattered and Gridded Data Interpolations

Thebasic situationis that, for non-discretemodel s, the sets of boundary pointswhichwould
compl etely definethe system’ sstructurefunction are uncountablyinfininitein number. Thus, we
cannot reasonably expect the customer to specify the system compl etely using boundary points.
Some authorshave used this point to arguethat the continuousmodel isinfeasible.

However,thereis another option: taking whatever data pointsthe customer can giveyou, and
using themto construct a multi-dimensionalinterpol ationto the customer’ grue structurefunction.
We consider thistechniquehere.

First, let’ sconsider a situation wherethe customer givesus only five datapoints (includingthe

extrema):

inp = {{{0,0},0},{{0,1/2},1/2},{{1/2,0},1/2},
{{1/2,1/2},3/4},{{1, 1}, 1}};

Wefirst verify that the customer’ dnput is coherent (note, though: coherencein this context only
means' hon-decreasing"- the customer has not after al specifieda compl etestructurefunction):

Cohl nput i np]

True

Now, we plot the Shepardinterpolationto the structurefunctionfor thistwo-componentsystem.
Notethat thereare"bumps' near the data pointsthat the customer supplied. Thisisa
characteristicof Shepard’ amethod (the pointson the graphsarethe customer supplied datapoints).
Thismethodis"modified" only in the sensethat the valuesof the functionat the customer
supplied datapointsare equal to thosepoints: in raw form, Shepard’ anethodis not defined at
those points, thoughit approachesthem smoothly fromall directions.

Show Pl ot 30] Shepar d[{ x1, x2},inp], {x1, 0, 1}, {x2, 0, 1},
Di spl ayFuncti on->l dentity],
Graphics3D[Point /@Flatten /@i np,
Di spl ayFunction->ldentity],
Di spl ayFuncti on->$Di spl ayFuncti on,
AxesLabel - >{"x1", "x2", " phi (x)"},
Pl ot Label - >
"Interpol ati on Usi ng Modified Shepard’ s Met hod"]

I nterpolation Using Mdified Shepard’ s Mt hod

- G aphics3D -

Now, we do the sameinterpol ationusing the M ultiQuadricmethod. Notethat the constant
weightsto the MultiQuadricmethod must first be calculated. Also, notethat avaluefor RSQ of 1
will be used throughoutthis example.

i npc=Mul ti Quadricdinp, 1]

{7.20473, -5.10365, -5.10365, 2.71013, 0.512785}

Hereisthe plot of the MultiQuadricinterpolation. Notethat it is much smoother than the
Shepard’ smethodinterpolation.

Show Pl ot 3D[Mul ti Quadri c[{x1, x2},inp,inpc,1],
{x1,0, 1}, {x2,0, 1},

Di spl ayFunction->ldentity],

Graphics3D[Point /@Flatten /@i np,
Di spl ayFuncti on->ldentity],

Di spl ayFuncti on->$D spl ayFuncti on,

AxesLabel - >{"x1", "x2", "phi (x)"},

Pl ot Label ->"I nterpol ati on Using Mil ti Quadric Method"]

I nterpolation Using Multi Quadric Method

- G aphics3D -

Now, we examinesituation wherethe customer data points are generatedfrom somefunction,
whichfor the purposesof analysiswill fromthen on be treated as unknown. For the purposesof
illustratingthe differencesbetweenthe Shepard’ smethod and the M ultiQuadricmethod, thisis
essential asit will allow usto comparethe resultsof the two methodsto a commonreferencepoint:

phi[x_] := Times @@ X

Hereisaplot of thistheoretical structurefunction:

Pl ot 300 phi [{x1, x2}], {x1, 0, 1}, {x2, 0, 1},
AxesLabel - >{"x1", "x2", "x2*x2"},
Pl ot Label - >" Theoretical Structure Function - Test 1"]

Theoretical Structure Function - Test 1

- SurfaceG aphics -

First, weinterpol atedbased on gridded data (the normal casewill be scattereddata). Wefirst use
Shepard’ smethod, then the M ultiQuadricmethod.

test 1=Phi Gri d[phi];

Show Pl ot 30] Shepar d[{ x1, x2}, test1],{x1,0, 1}, {x2, 0, 1},
Di spl ayFuncti on->l dentity],
Graphics3D[Point /@((Flatten / @testl)+
Tabl e[{0, 0, 0.01},{Length[test1]}]),
Di spl ayFuncti on->ldentity],
Di spl ayFuncti on->$D spl ayFuncti on,
AxesLabel - >{"x1", "x2","x1*x2"},
Pl ot Label - >
"Interpol ation Using Modified Shepard’s Method - Test 1"]

I nterpolation Using Mdified Shepard’s Method - Test 1

- G aphi cs3D -

testlc=Mul ti Quadric(testl, 1];

Show Pl ot 3D0] Mul ti Quadric[{x1, x2},testl,testlc, 1],
{x1,0, 1}, {x2,0, 1},
Di spl ayFunction->ldentity],
G aphics3DPoint /@((Flatten /@testl)+
Tabl e[{0,0,0.01},{Length[test1]}]),
Di spl ayFunction->ldentity],
Di spl ayFuncti on->$Di spl ayFuncti on,
AxesLabel - >{"x1", "x2", "x1*x2"},
Pl ot Label - >
"Interpolation Using Multi Quadric Method - Test 1"]

Interpolation Using Multi Quadric Method - Test 1

- Graphi cs3D -

Now, we performthe sameanalysi swith yet another structurefunction. However,in this casethe
datawill be randomrather than gridded:

phi 2[x_] := Max[x]

t est 2=Ext r emaAdd[Randonhi [phi 2, 16]] ;

Pl ot 30[phi 2[{ x1, x2}1, {x1, 0, 1}, {x2, 0, 1},
AxesLabel - >{"x1", "x2", "Max[{x1, x2}]1"},
Pl ot Label - >" Theoretical Structure Function - Test 2"]

Theoretical Structure Function - Test 2

- SurfaceG aphics -

Show Pl ot 30] Shepar d[{ x1, x2}, test2], {x1,0, 1}, {x2, 0, 1},
Di spl ayFuncti on->l dentity],
Graphics3D[Point /@((Flatten / @test2)+
Tabl e[{0, 0, 0. 05}, {Length[test2]}]),
Di spl ayFuncti on->ldentity],
Di spl ayFuncti on->$D spl ayFuncti on,
AxesLabel - >{"x1", "x2", "Max[{x1, x2}]"},
Pl ot Label - >
"Interpol ation Usi ng Modified Shepard’s Method - Test 2"]

I nterpolation Using Mdified Shepard’s Method - Test 2

- Graphi cs3D -

test2c=Mul ti Quadric(test2, 1];

Show Pl ot 3D0] Mul ti Quadric[{x1, x2},test2,test2c, 1],
{x1,0, 1}, {x2,0, 1},
Di spl ayFunction->ldentity],
G aphics3DPoint /@((Flatten /@test2)+
Tabl e[{0,0,0.01},{Length[test2]}]),
Di spl ayFunction->ldentity],
Di spl ayFuncti on->$Di spl ayFuncti on,
AxesLabel - >{"x1", "x2", "Max[{x1, x2}]"},
Pl ot Label - >
"Interpolation Using Miulti Quadric Method - Test 2"]

Interpolation Using Mul ti Quadric Method - Test 2

Max [

- G aphics3D -

For thislast example, wewish to quantify the differencebetweenour interpol ationsand the real
valuesof thefunction. Thiswill be doneby comparingthe differencesbetweenour estimateof the
structurefunctionand thereal valuesat aset of pointson aregular grid. Notethat your results
may be differentif you recal cul atethis notebook, dueto the randomnature of the data sets.

Shepar dRMSEr r or [t est 2, phi 2]

0. 112412

Mul ti Quadri cRMSError[test2, phi2, 10, 1]

0. 053017
Thereis oneimportant point that so far has been missedin thisanalysis. We botheredto check the
customer input in the first caseto seethat it wasnon-decreasing,and in subsequent cases
generatedthe datafrom functionsthat we knew to be non-decreasing. However, are we assured
that our interpol ationis non-decreasing,especiallywhenthe input datais scattered? Special "ND"
versionsof thesefunctionswerewrittento aleviateconcernsof loss of coherence. Seethe

function usage statements(or the documentationearlier in this chapter) for detailson how thisis
done).

Unlikethe regular non-"ND" functions, these ND functionsreturnaregular grid of interpolated
points, which can then be passedto MLinInt[] to linearly interpol ateother points betweenthe grid
points. Itisassumedthat thislinear interpolationis non-decreasing,if the underlyinggrid values
are non-decreasing.

Frist, we notethat ShepardND producesa non-decreasinggrid, while Shepard does not, for the
samedataset (again, if you recalculatetest2, this may not be the casefor your particular
randomi zation):

ans=Shepar dND[t est 2] ;
Cohl nput ans]

True
ans2=ShepardGid[test2];

Cohl nput f ans2]

9, 10
14, 15

Fal se

Now, hereisthe full functionestimateand graphfor the Non-DecreasingShepard’ smethod:

Show Pl ot 3D0[M.i nl nt [{x1, x2}, ans], {x1, 0, 1}, {x2, 0, 1},
Di spl ayFuncti on->l dentity],
G aphics3D[Point /@((Flatten / @ans) +
Tabl e[{0, 0, 0. 05}, {Length[ans] }]),
Di spl ayFuncti on->ldentity],
Di spl ayFuncti on->$D spl ayFuncti on,
AxesLabel - >{"x1", "x2", "Max[{x1, x2}]"},
Pl ot Label - >
"Gridded ND Shepard's, Linearly Interpolated - Test 2"]

Gri dded ND-Shepard’'s, Linearly Interpolated - Test 2

0. 29| fatdlety /0. 75
s AUS7)
. 25

- Graphi cs3D -

By way of comparison,hereistheidentical graph, but for the regular Shepard’ smethod.

Show Pl ot 3D0] M.i nl nt [{x1, x2}, ans2], {x1, 0, 1}, {x2, 0, 1},
Di spl ayFuncti on->l dentity],
Graphics3D[Point /@((Flatten / @ans2) +
Tabl e[{0, 0, 0. 05}, {Length[ans2]}]),
Di spl ayFuncti on->ldentity],
Di spl ayFuncti on->$D spl ayFuncti on,

AxesLabel - >{"x1", "x2", "Max[{x1, x2}]"},
Pl ot Label - >

"Gridded Shepard's, Linearly Interpolated - Test 2"]

Gri dded Shepard’'s, Linearly Interpolated - Test 2

- Graphi cs3D -

We notethat the ND method actually has a better RM SError number for this example.
G i ddedRMSEr r or [ans, phi 2]

0. 0852042

G i ddedRMSEr r or [ans2, phi 2]

0.11883

Now going back to our earlier multiplicativestructurefunction, we notethat thereis avast

differencebetweenthe performanceof the MultiQuadricmethod and the Shepard’ smethodin this
case.

i Nnp2=Phi Grid[(Times @@#) &] ;
ans2shep=Shepar dNDO i np2] ;

ans2ng=Mul ti Quadri cND[i np2, 5, 1] ;

Gri ddedRVBError[ans2shep, (Tines @@#)& // N

0. 0602315

G i ddedRVBError[ans2ng, (Tines @@ #)& // N

0. 000528323

m Determining Optimal RSQ Values

The question of what valueto usefor RSQ in the MultiQuadricinterpolationis a matter of some
theoretical debate. A few papershavebeen published containinggeneral guidelines, but the fact
remainsthat the value of RSQ can makea LARGE differencein the quality of fit one obtains, and
that the problemis highly problemdependent. Thus, it was deemed of valueto attemptto discern,
for thetypeof problemthe MultiQuadricmethodis being used for here, what valuesof RSQ might
be reasonable.

First, wedefineafew structurefunctionsthat are commonly usedin reliability studies:
phi 1[x_] := M n[Xx]
phi 2[x_] := Max[x]

Now, we cal culatea random set of 20 datapointsin the (x1,x2) plane. Thesewill beusedin
combinationwith the value of the (assumed) structurefunctionat that point to createa dataset. In
general, our planisto be ableto comparea M ulti Quadricinterpol ation(obtainedfrom a set of n
data points) for some curveto valuesof that curveat pointsother than the datapoints. If the
averagesguared deviationof the curvefit fromthereal valueat thesetest pointsislow, thenwe
will say that thefit isgood. We arelookingfor thelowest possiblevalueof this mean root mean
squared deviation,as afunctionof rsq. Areassumptionwill then be that sincethisis atypical sort
of reliability problemwith atypical number of customer-supplieddata points, that our estimatesof
the optimal RSQ value should give us guidanceas to what sort of default valueto set for RSQ.

rawdat a=Randonteener at e[20, 2] ;

Tabl eFor n{ rawdat a, Tabl eSpaci ng->{0}]

0.522751 0.198628
0. 35554 0.559014
0. 628485 0. 397655
0. 226962 0. 873327
0.937107 0. 236822
0. 296094 0.584736
0.108947 0. 22513

0. 604372 0. 313554
0.156146 0. 0543806
0. 968775 0. 0148952
0.839124 0. 790684
0.960192 0.491718
0.316374 0. 592056
0. 604652 0. 932704
0. 687888 0. 194401
0.37769 0. 0593762
0. 750782 0. 957579
0. 0815961 0.47464

0. 641834 0. 732449
0.477224 0.161086

Now, as an assumptionof coherent systemsis that the maximal state vector mapsinto the maximal
systemstate, and that the minimal state vector mapsinto the minimal systemstate, we add this
additional piece of knowledge. We now haveatotal of 22 datapoints.

dat al=ExtrenmaAdd[{#, phil[#]}& / @rawdata];

dat a2=ExtrenmaAdd[{#, phi2[#]}& / @rawdata];

Now, we examinea graph of the error as afunctionof RSQ.

Pl ot [Mul ti Quadri cRVSEr ror[datal, phi 1,5, rsq],
{rsq,0.2,0.3},
Pl ot Label - >
"RVMS Error as a Function of R*2 (phi=Mn[x], n=2, N=22)",
AxeslLabel ->{"R*2",""}]

RMS Error as a Function of R*2 (phi =M n[x], n=2, N=22)

0. 03055¢
0. 0305}
0. 03045
0. 0304

0. 03035

022 0.24 026 028 0372

- Graphics -

Now, optimizing,wefind the optimal RSQ valuefor this problem

Fi ndM ni nuni Mul ti Quadri cRVBError[datal, phil,5,rsq],
{rsq, 0. 075, 0. 080}]

{0. 0302979, {rsq — 0.264888 }}

We proceedwith the sameanalysis, using a different structurefunction.

Pl ot [Mul ti Quadri cRVSEr ror [dat a2, phi 2, 5, rsq],
{rsq, 0. 10, 0. 25},
Pl ot Label - >

"RMS Error as a Function of R*2 (phi=Max[x], n=2, N=22)",
AxeslLabel ->{"R*2",""}]

RMS Error as a Function of R*2 (phi =Max [x], n=2, N=22)

0. 0272

0.0271}

0.12\0.14 0.16 0.18 0.2 0.22 0.24 1?2

0. 0269

- Graphics -

Fi ndM ni muni Mul ti Quadri cRVBError[dat a2, phi 2, 5,rsq],
{rsq, 0. 040, 0. 038}]

{0. 0268152, {rsq - 0.176478 }}

Now, for thefirst structurefunction, we performthe optimization15 differenttimeson 15
different data sets, to find the mean and varianceof the optimal RSQ value obtained.

b=Tabl e[Randontzener at e[20, 2], {15}];

ansb=Tabl e[rsq /. Fi ndM ni muni Mul ti Quadri cRVSError [
Ext remaAdd[{#, phil[#]}& /@Db[[i]]],
phi 1,5,rsq],{rsqg, 0.075,0.080}][[2]],
{i,Length[b]}];

Tabl eFor nf ansb, Tabl eSpaci ng- >{ 0}]

0.102249
08042

. 110037
196671
14035

402902
0834257
0740417
15372

207568
135696
180243
0371163
25137

. 259234

Co000000000000

We now request the mean and standard deviationof the set of optimal RSQ valuesobtained. The
only thing that was different betweenthese data sets wasthe placement of 20 of the 22 datapoints.

Appl y[Pl us, ansb] / Length[ansb]

0.161003

Sqrt[Appl y[Pl us, (ansb - Apply[Plus, ansb] /
Lengt h[ansb])”"2]/(Length[ansb] - 1)]

0. 0936303

Now, wewishto examinewhat the optimal valueof RSQ is for systemsof other sizes, and for
datasetsof differentsizes.

MaxROpt [b_] := Fi ndM ni mun{ Mul ti Quadri cRVSErr or [
ExtremaAdd[{#, phil[#]}& /@Db],
phi 1,5, rsq],{rsqg, 0. 075, 0. 080}]
Hereis a systemwith two components, with 100 customer-supplieddata points.
bl=RandontGener at e[100, 2] ;
Max ROpt [b1]
{0. 0146579, {rsq — 0.074963 }}
Hereis a systemwith two components,with 50 customer-supplieddata points.
b2=Randontener at e[50, 2] ;
Max ROpt [b2]
{0.0161703, {rsq — 0.0833332 }}

Hereis another systemwith two components, with 50 customer-supplieddata points.

b4=RandonmCener at e[50, 2] ;

MaxROpt [b4]

{0.0105009, {rsq — 0.0480841 }}

Hereis a systemwith two components, with 20 customer-supplieddata points.
b3=Randontener at e[20, 2] ;

MaxROpt [b3]
(0. 0474718, {rsq - 0. 168456 }}

Hereis a systemwith three components,with 10 customer-supplieddata points.
b5=Randontener at e[10, 3] ;

MaxROpt [b5]

{0.150134, {rsq - 0.28062 }}

Thedifficulty, of course, isthat in real life one would not know the"real" structurefunction, and
so onewould haveno way of knowinghow close one' sinterpolationisto pointsnot in the given
dataset (and so, onewould have no way of knowinghow good one’ schoiceof RSQis). All that
can be doneisto chooseavaluethat seemsreasonablegiven past history with known problems
one can assumeto be of similartype.

We notethat no optimal value of RSQ found wasgreaterthan 0.5. A defaultvalueof 1/6 wasset
for the MultiQuadricfunctionin this package. However,it may be changedfor other problems,if
avalueother than the default one seemsappropriate.

The NewFunctions Package

Asmany of thefunctionsin this packageare featuredand illustratedin the examplepackages
accompanyingthese sections, for someonly their "usage" statementswill be presentedhere.

m Function Documentation

= Bounds2[data,f,ag: 6]

Thisfunction findsboundsfor reliability for continuoussystems, based on the "maximal" and
"minimal" structurefunctions. Thesearethe structurefunctionsconsistingof the maximal and minimal
points (respectively)that the given data pointsfor each systemallows, under the assumptionof
monotonicity. It will work for any number of components,but for large data sets may takealong
period of time. Thedensity functionlist f consistsof the PDFsfor the state of each component, where
eachisafunctionof x. Dataisin theformthat datais normally providedin for the MultiQuadric
functions, etc. AgistheAccuracyGoalof the Numerical Integrationthat thisfunctioncontains. It has
amaximal valueof 6 - lower valueswill producefaster results. Thisfunctionhas beentested and found
to work properly for systemswith two and four components;it has not beentested for any systems
with more componentsthan four. Componentsare assumedto be independent,athoughthis
assumptioncould be easily relaxedif it may not be madefor the problemat hand. If thelist of density
functionsisindeed alist of CDF’ sinstead, then ag may be set to 0 to tell Bounds2that CDFsare
provided; thisresultsin faster computation, as numerical intergrationneed not be performed.

= MultiQuadricNDZ2[inpdata,rsq,prec]

Thisfunction performsthe samefunctionas MultiquadricND,but uses a newer and moreefficient
agorithm.

= MultiQuadricNDRM SError[data,phi,m]

Thisfunction performsthe samefunctionas MultiquadricRM SError but does so on the non-decreasing
grid generatedby MultiQuadricNDor (preferably) MultiQuadricND2.

m SystemFromDir ectEnumer ationL ow[p,data,fphi,pprob]

Thisfunctionwill return the minimumsystem state probabilitiesof adiscretesystem, using the partial
customer-supplieddata set named data. Thisfunctioncalls systable2low.

= SystemFromDirectEnumer ationHigh[p,data,fphi,ppraob]

Thisfunctionwill return the maximumsystem state probabilitiesof a discretesystem, using the
partial customer-supplieddata set named data. Thisfunction callssystable2high.

= PhiMinRM SError[data,phi,m,perc]

Thisfunctionallowscal culationof the RMSerror for a min structurefunctionspecifiedby data,
givenknowledgeof phi, with grid density m.

= PhiMaxRM SError[data,phi,m,perc]

Thisfunctionallowscal culationof the RM Serror for a max structurefunction specified by data,
givenknowledgeof phi, with grid density m.

= phiround[x,phi,fphi]

Thisfunctionwill return aval uerepresentingthe element of the set fphi whichis closest to phi[x].

= MuSigma[inp,expr]

Thisfunctionwill find an estimateof the mean and standard deviationof a system, giventhis
informationfor the componentsand a structurefunction, by using multi-dimensional Taylor
expansion. Specificaly,it returnsalist of two elements, wherethefirst is the estimated mean of
the systemin question, and the second is the estimated standard deviationof the systemin
guestion. Theinputisintheform[{varl,muvarl,sigmavarl} { varl,muvarlsigmavarl},...} ,and
exprisafunctionof each of thevari variables.

Hereisan example:

parans = MuSi gma[{{rl, 3/4, 1/10},
{r2, 2/3, 1/10}}, (r1+r273) /2]

{0.523148, 0.0833333 }

= SV SillOut[mmax]

For Erlangianmultistatecomponentswith m+1 states (beginningin their maximal statesat t=0),
whereeach state and the probability of that state are given by {i/m,p(i,t)} ,0<=i<=m, one may
calcul atethe point mu* t wherethe state variancereachesits maximum, so that for a given value of
mu one may know the specifictime at whichthe componentis at its maximumvariance. This
functionwill return atable of these valuesfor givenvaluesof mup to the given value of mmax, for
different sizesof systems.

Hereis an example, whichreturnsthe valuesof mu*t for givenvaluesof m up to m=10:

SVStill Qut [10] // Tabl eForm

o

. 693147
. 22042
. 79764
. 40894
. 04585
. 70298
. 37674
. 06452
. 76436
47473

© 00N O WDN P
o 01O~ W WNERE P

=
o

Binary DeterministicAnalysis
Tutorial

= |ntroduction

Thisdocumentis abrief, basic tutorial on the applicationof some of the functionsin the
DeterministicAnalysipackageto binary models.

m Basic Functions

m Definingthe System

L et us definea simplebinary systemwith four components. Notethat we may namethe variables
anythingwewish, and till passthem properlyto the appropriatefunctions. They are giventheir
traditional namesherefor clarity.

First, we definethe component state space:

p ={{0,1},{0,1},{0,1},{0, 1}}

{{0, 1}, {0, 1}, {0, 1}, {0, 1}}

Each element of p isthe set of possiblestatesfor a given componentof the system. Sincethisisa
binary model, there are only two possiblestatesfor each of thefour componentsof the system.

Now, we must definethe system state space:
fphi = {0, 1}
{0, 1}

Sincethisis abinary model, thereare only two possiblestates of functioningfor the system.

Of course, wemay use any of the pre-existingfunctionswhich are part of every Mathematica
environment. Let usassumethat we wishto know how many componentscompriseour system. We
could use the followingcommand:

Lengt h[p]

4

We may of coursereview the set of possiblestatesfor the componentsby requestingthat p be
printed again (or we could just scroll up the screento whereit wasinitialy printed):

p
{{0, 1}, {0, 1}, {0, 1}, {0, 1}}

Now we should definethe structurefunctionwhich mapsthe states of the componentsinto the
states of the system. Our function phi should accept any combinationof elementsin p and return
someelementin fphi. We may use any Mathematica functionwewish to definethe structure
function (thereareliterally hundreds), and we may individually definedifferent valuesof fphi for
different component state vectors. If wewishedto, we could specify the entire systemby direct
enumeration. However, it is hoped for smplicity’ ssakethat onefunctionor asmall set of
functionswill performthis mappingfor us.

L et us assumethat we wishto examinea systemwherethe systemstateis the minimumof al the
componentstates. Asthereare no statespossiblefor any of the componentswhichis not also
possiblefor the systemto assume, this structurefunctionis well-defined.

phi[x_] := Mn[x]

Now we have defined a Mathermati ca functionof our own, whichwewill usein subsequent
calculations. Of course, whenwecall thisfunction, wewill be callingit with aparameterx. This
parameter x representsa componentstate vector and isalist of real numbers. Notethat the
underscoreafter the x and the colon beforethe = sign in the abovedefinitionare both necessary.

Now that we havedefinedthe set of valueseach component may assume(p), the set of values
whichthe system can assume(fphi), and the rel ationshi pbetween every possiblecomponent vector
and the system state (phi), we have compl etely specificedthe structural behavior of the model.

We may now beginto makecalculations.

= Determining System Coherence

Thefirst thing we should do with any systemisto determinewhetherit is coherentor not. If a
systemis coherent, we may bring to bear on the problemall of the theormsthat have been proved
for coherent systems. Of particularimportanceis to know whether the systemis non-decreasing;if
itis, wemay speak of boundary pointsin amathematicallywell-definedway. Thefollowing
exampleshowshow to check that a systemis non-decreasing:

NonDecr easi ngd p, phi]

True

The systemis non-decreasing. Now, we can check the limitsof the system, to be surethat the
maximal component state vector is mappedinto the maximal system state, and that the minimal
componentstate vector is mappedinto the minimal systemstate. Systemsthat fail thistest and
which are non-decreasingareindicativeof a poorly defined system state space that includes
maximal stateswhich may not be achieved evenwhen every componentfunctionsperfectly.

ProperLi m ts{ p, phi, fphi]

True

Thus, the system mapsthe maximal and minimal componentvectorsproperly. Now, we check the
componentrelevence. If acomponentisirrelevent,then thereis no componentstate vector where
the performanceof that particular componentwill affect the systemstate. Systemsthat have
irreleventcomponentsareindicativeof apoorly defined systemwherethe model is unnecessarily
large.

Rel event Conponent s{ p, phi]

True

Thus, sincethe systempassesall threeof theserel evencetests, it is coherent. Thesetests (along
with every other functionin the DeterministicAnalysi package) work equally as well with
multistatemodel s(with non-identical finite numbersof real statesfor every componentand for the
system) asthey do with binary models.

Of course, sincewewill wishto usethistest on many different systems, and sincea systemmust
passall threeteststo be coherent, we may wish to use one function, to check all threeat once. If it
returnstrue, the systemis coherent.

Coherent p, phi, fphi]

True

m Discerningand Manipulatingthe Boundary Points

Now, let us proceedwith our analysisby finding and manipulatingthe upper and lower boundary
pointsto this system. Notethat, for strictly binary models, thereis asimplifiedformin whichthe
pathsand cuts may be written; see the sectionlabelled"Binary Model SimplificationFunctions'
for moreinformation. However,as our goal hereis to understandhow to use thesefunctionsfor
general multistatemodels, the full form of upper and lower boundary pointswill be used for the
remainder of this particular section.

We may find the lower boundary pointswith the followingfunction:

| bps=LBPFrontt ruct ur e[p, phi, f phi]

{{{1, 1, 1, 1}, 1, Lower, Real }}

And we may find the upper boundary pointswith the followingfunction:

ubps=UBPFr ont r uct ur e[p, phi, f phi]

{{{0, 1, 1, 1}, O, Upper, Real }, {{1, O, 1, 1}, O, Upper, Real },
{{1, 1, 0, 1}, 0, Upper, Real }, {{1, 1, 1, 0}, O, Upper, Real }}

Notethe structureof the informationwhichthese functionshavereturnedto us. ubps, for
example,isalist containingfour elements. Each elementis an upper boundary point, indicating
that this systemhas four upper boundary points. Each boundary pointit itself alist, consistingof
four elements. Thefirstisthe vector of statesrepresentingthe boundary point. The secondisthe
level that vector is aboundary pointto. Thethirdis either the string"Upper" or the string
"Lower" to tag whichtype of boundary point the givenoneis. Thefourthand final elementin the
list representingeach elementis astring, whichis either "Real", "Virtua", or "Indet.”

Strictly speaking, thislast elementis not necessary, but it is sometimesinteresting. A boundary
pointistermed"Real" if the value of the systemis preciselythat givenlevel for thegiven
boundary point. Itistermed"Virtual"if it iseither abovethat value (for lower boundary points) or
below that value (for upper boundary points). Thissituationnormally occurswhenthereare
system stateswhich no component state vector mapsto, and sometimesin other casestoo. The
stringin thefourth positionis"Indet" if it is not knownwhether the boundary pointis"Rea" or
"Virtual". Inany case, theformsof ubpsand Ibps aboveare exampleof theformthe set of lower
and upper boundary points must take when passed to functionsin this packagethat requirethem.

L et us say that we weregiven only the upper boundary points, or perhapsthe lower boundary
points. It would be quite unnecessaryfor the customerto specify both, when one set can be
determinedfromtheother. If weweregiventhelower boundary points, we could obtain the upper
oneswith thefollowingfunction:

LBPToUBP[| bps, p, f phi]

{{{0, 1, 1, 1}, O, Upper, Indet }, {{1, O, 1, 1}, O, Upper, Indet },
{{1, 1, 0, 1}, O, Upper, Indet }, {{1, 1, 1, O}, O, Upper, Indet }}

Notethat thislist of boundary pointsis the sameas that whichwas obtained earlier. The only
differenceisthat "Indet" isusedin placeof "Redal." ThisisbecauseReal/Virtual/Indet
calculationsare madeonly in LBPFromStructure]Jand UBPFromStructure[Jas a matter of
curiosity: they are never used computational ly(thoughit would be most accurateto say that the
designation is not used computationally- a systemwith virtual boundary pointsthat are
removedwill bean ENTIRELY different system).

One may of coursealso cal cuatethe lower boundary pointsbased on the upper boundary points:

UBPToLBP[ubps, p, f phi]
{{{1, 1, 1, 1}, 1, Lower, Indet }}
Of course, it is often true that we may not havethe structurefunctionfor agiven problem: just the

upper or lower boundary pointsas specified by the customer. Evenif we assumethat wedon't
havethe structurefunction, the samerangeof analysisis still availableto us.

We can establishthe relevenceof all the componentswith only the upper and lower boundary
points using the function Boedi ghei merRel eventComponentsQ[]:

Boedi ghei mer Rel event Conponent s{ | bps, ubps, p]

True

L et us say that we doubt the self-consistencyof the boundary pointswe have been given, and wish
to check them. Thefollowingtwo functionswill check the self consistency of each of thetwo
typesof boundary points:

LBPSel f Consi stent | bps]

True

UBPSel f Consi st ent 0 ubps]

True

We can al so check the boundary point setsfor consistencywith each other, using the following
function:

BPConsi st ent ToEachQt her J | bps, ubps]

True

Boedigheimer[1992] created definitionsfor seriesand parallel that rely only on knowledgeof the
upper and lower boundary points. Two functionswill checkif (using thisdefinition) the systemis
parallel or seriesbased on the two sets of boundary points.

Boedi ghei mer Par al | el | bps, ubps, f phi]

Fal se

Boedi ghei mer Seri es | bps, ubps, f phi]

True

Notethat in the binary case series systemsare defined as oneswherethe structurefunctionis the
minimumof all of the components,or (equiva ently)that the structurefunctionis the product of all
of the system states. We would expect the systemto be series, then, and as we can see above
Boedigheimer’ glefinitionof seriesis consistentin this casewith the usual definition.

m Discerning StructureFFunction Based on Boundary Points

One can discernthe system state associ ated with any componentvector based on the boundary
pointsby using followingtwo functions:

Syst entt at eFr onLBP[| bps, fphi, {1, 1, 0, 1}]
0

Syst entt at eFr onLBP[| bps, fphi, {1, 1,1, 1}]

1

m Binary Model Simplification Functions

If you are accustomedto workingwith binary model sexclusively,the full form of thelists of
upper and lower boundary points may seem awkwardto you. For strictly binary models, we may
use somespecial functionsto convert the general list of boundary pointsto thetraditional form of
pathsand cuts:

Pat hsFr onlLBP[| bps]
{{1, 2, 3, 4}}
Cut sFr omUBP[ubps]

{{1}, {2}, {3}, {41}

We may al so specify the lower and upper boundary pointsfor binary modelsin thissimplified
form, if wewish, and then convertthemto full formfor further processing:

LBPFronPat hs[{{1, 2, 3, 4}}, 4]

{{{1, 1, 1, 1}, 1, Lower, Real }}

UBPFronCut s[{ {1}, {2}, {3},{4}}, 4]

{{{0, 1, 1, 1}, O, Upper, Real }, {{1, O, 1, 1}, O, Upper, Real },
{{1, 1, 0, 1}, 0, Upper, Real }, {{1, 1, 1, 0}, O, Upper, Real }}

Asan exampleof how Mathematicafunctionsmay be nested, consider the PathsToCutg[] function,
whichis definedasfollows:

??Pat hsToCut s

Pat hsToCuts [paths,n] returns the mninal cuts based on the
mnimals paths for a system of order n.

Attributes [PathsToCuts] = {Protected }

Pat hsToCuts [paths_List , n_lnteger] : = CutsFromJBP |
LBPTOUBP [LBPFronPat hs [paths, n], Table[{O, 1}, {n}], {0, 1}]]

Pat hsToCuts [___] : =
Message [Det erm ni sti cAnal ysi sFunction ::badcall, "PathsToCuts "]

Asyou can seg, it acceptsas theinnermost argument the simplifiedbinary form of path
specification,convertsit to full form, passesthat full formto the LBPToUBP[] functionfor
conversion,and then convertsthe full-formresultsto the simplifiedbinary form of cut
specification. Hereis an example:

Pat hsToCut s[{{1, 2, 3, 4}}, 4]
({1}, {2}, {3}, {4}}
Cut sToPat hs[{{1},{2},{3},{4}}, 4]

{{1, 2, 3, 4}}

= Vector Comparison

L essOrEqual Q[x,y]discernswhetherthe vector x islessthan or equal to the vectory, in the sense
that is usually meantin the study of multistatereliability.

LessOrEqual 4 {1,0,1},{1,1, 1}]

True

Therearesimilar functionsLessQ[x,y], GreaterOrEqual[X,y] GreaterQ[X,y].

= Component State Combinations: Vector Space[p]

V ectorSpace] p| takesa system state spacevariableand returnsalist of all the possible
combinationsof states. Thismay be useful if youwant to createa map of all the possible
componentvectorsto their associatedsystem states.

Vect or Space[p]

{{0, 0, 0, 0}, {0, O, O, 13}, {0, O, 1, O}, (O, O, 1, 13},
{o, 1, o, 0}, (O, 21, O, 13}, {O, 1, 1, O}, (O, 1, 1, 1},
{1, o, o, 0}, {1, o0, O, 1}, {1, O, 1, O}, {1, O, 1, 1},
{1, 1, 0, O}, {1, 1, O, 13}, {1, 1, 1, O}, {1, 1, 1, 1}}

We could use our knowledgeof Mathematicato createalist, whereeach component containsboth
the componentvector and the system state associatedwithit, for al possiblecomponentvectors.

{#, phi[#]}& / @ Vector Space[p]

{{{0, 0, 0, 0}, 0}, {{0, 0, O, 1}, O}, {{0, 0, 1, 0}, O},
({0, 0, 1, 1}, 0}, {{0, 1, 0, O}, 0}, {{0, 1, O, 1}, O},
({0, 1, 1, 0}, 0}, {{0, 1, 1, 1}, 0}, {{1, 0, 0, O}, O},
({1, 0, 0, 1}, 0}, {{1, 0, 1, 0}, 0}, {{1, 0, 1, 1}, O},
({1, 1, 0, 0}, 0}, {{1, 1, 0, 1}, 0}, {{1, 1, 1, 0}, O},
({1, 1, 1, 1}, 1}

m Structural Importance: Structurall mportancesp,phi]

Thefunction Structural Importanced p,phijis avail ableto discernstructural importances. It returns
avector of length n consistingof the structural importancesof each component,and is based on
the general definitiongiven on Boedigheimer[1992]. Hereis an exampleof itsuse:

Structural | nportances] p, phi]

{ J

Notethat an irreleventcomponenthas a structural importanceof zero, asillustrated bel ow:

o =

r 1
8§ 8

|

phi2[x_] = Mn[x[[1]],x[[2]],x[[3]]]

Structural | nportances] p, phi 2]

{

Of course, wewould ordinarily have noticed this possibility by utilizingeither of thefollowing
two functions:

1 1
7 7 0

S s

Rel event Conponent sQJ p, phi 2]

Fal se

Coherent { p, phi 2, f phi]

Fal se

m Limit on Number of Critical Upper Vectors- CUVUpperBound[n,m]

In Xueand Y ang (" SymmetricRel ationsin Multistate Systems', 1995), amethodis outlinedto
discover an upper limit on the number of "critical upper vectors," whicharerelated to the
boundary pointswe have been utilizingin thisdocument. Thisfunctionfindsthe upper limit on
the number of critical upper vectors, giventhat the system has n componentsand each component
and the systemhas exactly m+1 states. Hereis an example:

CUVUpper Bound][7, 1]

35

CUVUpper Bound][7, 2]

393

CUVUpper Bound[7, 7]

134512

Asone might suspect, the complexity of a givenmultistatesystemincreasesrapidly asthe number
of statesper componentincreases.

= Boundary Point Set Completion - BPClean[lbpsor ubps]

Another function, BPClean[],is intended to makedataentry for lower and upper boundary point
setseasier. Althoughafew extrafeaturesare built into thisfunctionthat allow you to specifyina
shorthandway the typesof upper or lower boundary point (seefunction documentationfor
details), at abasiclevel thisfunctionwill allow you to skip thelast two string entriesfor each
boundary point. Thisfunctionwill aso sort the boundary point set properly, in ascendingorder of
thelevel for each point. Hereis an example:

I bpsshort ={{{3,3,3},3},{{1,1,1},1},{{2, 2,2}, 2}}

{{{3, 3, 3}, 3}, {{1, 1, 1}, 1}, {{2, 2, 2}, 2}}

BPC ean[| bpsshort, "Lower", "Real "]

{{{1, 1, 13}, 1, Lower, Real }, {{2, 2, 2}, 2, Lower, Real },
{{3, 3, 3}, 3, Lower, Real }}

m StrategiesWhen the StructureFunctionis Not Known

Notethat, with many systems, we do not havethe explicit structurefunctionfor the system.
Instead, we havethe assumptionthat the structurefunctionis non-decreasingand we havea set of
either the upper or lower boundary points (commonly called minimal cutsand minimal pathsin the
binary case) whichare providedby the customer. If thisisthe case, wemay (first using
LBPToUBP[] or UBPToLBP[]to get the other set of boundary points, if only one set is given, and
then perhapsusing UBPSelfConsistentQ[],L BPSelfConsistentQ[],and
BPConsistentToEachOtherQ[Jto check the internal self-consistencyof the boundary pointsif we
have doubts) use the function Boedi ghei merRel eventComponentsQ[to check for component

rel evencebased on the boundary pointsrather than the structurefunction.

If we can makethe assumptionthat the set of boundary pointswe have been givenis completeand
properly sorted, we can examinethe set of boundary pointsto see whetherthe system properly
mapsthe minimal and maximal states. If the maximal statefor whichthereislower boundary
point is equal to the maximal statein the set of stateswe are givenfor the system, and if the
minimal statefor whichthereis an upper boundary point is equal to the minimal statein the set of
stateswe are givenfor the system, then ProperLimitsQ[]would have been satisfied.

Of course, another optionisto use the functionsSystemStateFromL BP[]or
SystemStateFromUBP[]as part of the definitionfor phi[] (asthey will returnthe system state of
any given component state based on either the lower or upper boundary points) and then utilize
CoherentQ[] asitis.

General Discrete Analysis
Tutorial

= |ntroduction

Thegoa of thisdocumentisto illustratehow one may use variousRel Pack packagesto perform
complex analysesquickly and easily on a sampleproblem. Thistutorial usesonly afractionof all the
functionswhichareavailablein RelPack 2.0, and does not utilizeany of the moreadvancedpackages
(such as ContinuousOptimization).

Wewill begin by definingthe systemand graphingits behavior. Thenwewill, in turn, examinethe
deterministic, stochastic, and dynamicproperties(both actual and potential) that arisefromit.

m System Definition

First, we must definethe structurefunction, the component state vector space, and the system state
space.

TheMathematica functionbelow definesthe system’ sstructurefunction.

phi [x_] := Modul e[{syst ab},
systab = {{{0, 0}, 0},
{{1, 0}, 0},
{{2, 0}, 1},
{{3,0}, 1},
{{4,0}, 1},
{{5, 0}, 1},
{{0, 1}, 0},
{{1,1}, 0},
{{2,1}, 2},
{{3,1}, 2},
{{4,1}, 2},
{{5,1}, 2},
{{0, 2}, 0},
{{1,2},3},
{{2, 2}, 3},
{{3.2}, 3},
{{4, 2}, 3},
{{5, 2}, 3},
{{0, 3}, 0},
{{1,3},3},
{{2,3}, 4},
{{3,3},4},
{{4,3}, 4},
{{5,3},5},
{{0, 4}, 0},
{{1,4},3},

rro 2 M

Next, we definethe state space of the system:
fphi = Range[0, 5]
(0, 1, 2, 3, 4, 5}

Now, we definethe state space of the componentvectors:
p = {Range[0, 5], Range[O, 4]}

{{0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4}}

To check our work, we request a table of the valuesof the structurefunction. x1 isaongthe
horizontal axis, and X2 is along the vertical axis.

phitab = Tabl e[phi [{x1,x2}], {x2, 4, 0, -1},
{x1, 0, 5}];

Mat ri xFor n phi t ab]

0 3 4455
0 3 4 4 45
0 33 3 33
002 2 2 2
001111

m Graphsof the StructureFunction

For ease of visualization,it might be wiseto show a graph of the original structurefunction. First,
weload afew standard M athematica packageswhichassist in graphical work:

<<G aphi cs‘ G aphi cs3D
<<G aphi cs* Legend'

With these packagesin place, we can view the systemas a 3D Bar Chart:

Bar Chart 30] Tabl e[phi [{ x1, x2}],
{x1, 0, 5}, {x2, 0, 4}],
Pl ot Label -> "phi[x]",
AxesLabel -> {"x1","x2"},
ViewPoint -> {-1.819, -2.233, 1.775}];

We can also view the systemas a density plot:

ShowLegend|
Li st Densi tyPl ot [Tabl e[phi [{x1, x2}],
{x2, 0, 4}, {x1, 0, 5}],
Pl ot Label -> "phi[x]",
FranelLabel -> {x1, x2},
Rot at eLabel -> Fal se,
Di spl ayFunction -> ldentity],
{GrayLevel [1-#] & 6, " 5", " 0",
LegendPosition -> {1.1, -0.4}}];

phi [x]

= DeterministicBehavior of the System

First, we must verify that the systemis coherent:
Coherent p, phi, fphi]
True

Now, we can reguest the lower and upper boundary points:

| bps=LBPFr ontt ruct ur e[p, phi, fphi];

Mat ri xFor ni | bps]

{1, 23
{2, 0}
{1, 23
{2, 1}
{1, 23
{2, 33
{4, 4}
{5, 3}

a o WNDNPE

Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower

Virtual
Real
Virtual
Real
Real
Real
Real
Real

ubps=UBPFr ontt r uct ur e[p, phi, f phi];

Mat ri xFor n{ ubps]

{0, 4}
{1, 1}
{0, 4}
{1, 13
{5, 0}
{0, 4}
{5, 1}
{1, 43
{5, 2}
{3, 4}
{4, 3}
{5, 2}

0

ARARMNWWNNRBREL PO

Upper
Upper
Upper
Upper
Upper
Upper
Upper
Upper
Upper
Upper
Upper
Upper

Real
Real
Virtual
Virtual
Real
Virtual
Real
Real
Real
Real
Real
Virtual

Now, we check to seeif the system states obtained using JUST the upper or lower boundary points
are the same as those obtai ned when the whol e structurefunction phi was used.

| bpt ab = Tabl e[Syst enfst at eFr onLBP[| bps, f phi, {x1, x2}],

{x2, 4, 0,

Mat ri xFor ni | bpt ab]

O O O o o
O O W ww
PN WS~

4

PN WS

-1},

P N W~ O
P N W oo

{x1, 0, 5}];

ubpt ab = Tabl e[Syst entt at eFr omJBP[ubps, f phi, {x1, x2}],

{x2, 4, 0,

-1},

{x1, 0, 5}];

Mat ri xFor nf ubpt ab]

0 3 4455
0 3 4 4 45
0 33 3 33
002 2 2 2
001111

Aswe can see and explicitly verify, the tables of valuesproducedareidentical.

phi t ab==I bpt ab==ubpt ab

True

Of course, many systemswill be specified by the customer not througha structurefunction, but
throughthe set of either the lower or the upper boundary points. For systemswhichare specified
in thisway, afunctionin this packagecalled BPClean[] can significantlyeasedataentry. Also,
thereare a number of functionsin this packagewhich drastically simplify the dataentry
requirementswhen the systemis strictly binary.

Onequestionthat has comeup is whether the table of systemstate valuesproducedby the
upper/lower boundary point approachwoul d be the sameif the "virtual" boundary pointswerenot
included. Let usremovethem and see...

(I bpsreal = Select[I bps,
#[[4]]=="Real" &) // MatrixForm

{2, 0} 1 Lower Real
{2, 1} 2 Lower Real
{1, 2} 3 Lower Real
{2, 3} 4 Lower Real
{4, 4} 5 Lower Real
{5, 3} 5 Lower Real
(ubpsreal = Sel ect[ubps,

#[[4]]=="Real" &) // WMatrixForm

{0, 4} O Upper Real
{1, 1} 0O Upper Real
{5, 0} 1 Upper Real
{5, 1} 2 Upper Real
{1, 4} 3 Upper Real
{5, 2} 3 Upper Real
{3, 4} 4 Upper Real
{4, 3} 4 Upper Real

(1 bpt abr
Tabl e[Syst enfst at eFr onLBP[| bpsreal , f phi, {x1, x2}],

PN Wk~ O

-1}, {x1, 0, 5}]) // WMatrixForm
5

P N W o

Tabl e[Syst enft at eFr omUBP[ubpsr eal , f phi, {x1, x2}],

{x2, 4, 0,
0 0 4 4
0 0 4 4
0 0 3 3
0 0 2 2
0 011
(ubptabr =
{x2, 4, 0O,
3 3 4 4
3 3 4 4
3 3 3 3
2 2 2 2
0 011

P N wWwhr~ O

-1}, {x1, 0O, 5}]) // MatrixForm
5

(62062 ¢ BN,

phi t ab==I bpt abr

Fal se

phi t ab==ubpt abr

Fal se

Aswe can see, incorrect resultsare producedwhenthe "Virtual" boundary pointsare not included
in the boundary point lists.

To further test this softwarepackage, we verify that we can obtai n the upper boundary points
based on the lower boundary points, and visaversa:

(Drop[#,-1] & / @LBPTOUBP[| bps, p, fphi]) ==
(Drop[#,-1] & / @ubps)

True

(Drop[#,-1] & / @ UBPTOLBP[ubps, p, fphi]) ==
(Drop[#,-1]1& / @I bps)

True

Now, we cantest if all the componentsare rel event, based not on the structurefunction but instead

on the boundary points.

Boedi ghei mer Rel event Conponent s{ | bps, ubps, p]

True

Althoughthisis not generally necessaryto do for boundary pointswhich are calculatedfroma
coherent systeminstead of being provided by the customer, we can check for theinternal and

relativeconsistency of the boundary point sets:
LBPSel f Consi stent | bps]
True

UBPSel f Consi st ent ubps]

True

BPConsi st ent ToEachQt her | bps, ubps]
True

Althoughwewould not expect thisto be the case due to therather arbitrary natureof thisstructure
function, we can check, using the Boedigheimer[1992] definitionsfor seriesand parallel based on

the boundary points, whether this systemfits either set of criteria.
Boedi ghei mer Par al | el J | bps, ubps, f phi]
Fal se
Boedi ghei mer Seri es{ | bps, ubps, f phi]
Fal se

We can also find the structural importancesof the components.

Structural | mportances|p, phi]

1 %l

We can find the system extremabased on the boundary point sets (atrivial problem):

oo

SystenLi m t sFronBP[| bps, ubps]
{0, 5}

We can also find thefull fphi set based on the boundary points (another trivial problem):

Syst enSpaceFr onBP[| bps, ubps]

{0, 1, 2, 3, 4, 5}

m StochasticBehavior of the System

To proceed, we must have a matrix whichrepresentsthe probabilitiesthat each componentisin
each of itspossiblestatesas afunctionof time. Since stochasticinformationwasnot givenin the
original formulationof this problem, wearbitrarily assign probabilities. For this section, wewill
assign static probabilitieswhich are independentof time.

2,0.15, 0. 05},

,0.2,0.3,
0.2,0.3,0.1,0.2}}

{0.1 0.
{0.2,0.2,0.3,0.
{{0.1, 0.2, 0.3, 0.2, 0.15, 0.05}, {0.2, 0.2, 0.3, 0.1, 0.2}}

Thefirst sublist givesthe probabilitiesthat x1 isin each oneof its states, whilethe second sublist
givesthe probabilitiesthat X2 isin each one of its states. To be surethat we havenot entereddata
incorrectly,we can call afunctionwhichwill check that our probability matrixisthe samesize as

p, and that the sum of each sublistisone.
Consi stent Probabilitiesq p, pprob]

True
We can easily calculatethe exact probabilitiesof the systembeingin any one of its states,
assumingthat the componentsare mutually indpendent, through direct enumeration.

ans=Syst enfronDi r ect Enuner ati on[p, phi, fphi, pprob]

{0.18, 0.14, 0.14, 0.33, 0.165, 0.045}
We can also cal culatethe "reliability importances' (al so called " performanceimportances") of any
of the components. Thisis the stochasticanal og of the structural importancethat we cal culated
earlier. First, wecalculateit for level 3 of component1 (x1):

Rel i abilityl mportance[p, phi, fphi, pprob, 1, 3]

2.7
Now, we call another functionwhichwill returnthe completetable of reliability importances,for
every level of every component. In general, we may wish to direct attentionfor improvements(all

other thingsbeing equal) to componentsthat exhibit a high reliabilityimportancein the staterange
wherethey are expectedto reside.

Rel i abilityl mportancesTabl e[p, phi, fphi, pprob]

({0, 1.8, 2.7, 2.7, 2.9, 3.}, {0., 0.7, 2., 2.75, 2.9}}

= DynamicBehavior of the System

Since no stochasticor dynamicinformationwas givenin the original formulationof this problem,
wewill hypothesi zea dynamicmodel and exploreits characteristi csbefore proceedingwith the
reliability measuresanalysis.

= PDPErlangian[M ,val t]

L et us begin by assumingthat each componenti beginsin its maximal state and spendsalength of
timein each state governedby an exponential distributionwith a common parameter mui before
progressingto the next lower state. We assumethat the componentsno longer changestate once
they reach their minimal states. Wewishto calculatefor such a model the probability that the
componentsarein any one of their given statesas afunctionof time, asthat istheinformation
whichisrequiredby the reliability measuresand system state cal cul ational gorithms.

We can cal cul atethese dynamic probabilitiesfor each of the componentsasfollows. Thelists
whichfollow the calculationfor each component consist of the probabilitiesas afunctionof time
that each componentisin any one of its states. The second elementin thefirst list, for example,is
the probability that componentx1 in its second-to-worststate.

x1lprob = PDPErlangian[5,nmul,t] // Sinplify

1

{ﬂ-E*”““ (24 (-1 +E™Yy _24nult -12mul?t2-4mul1dt3 -nmult?),
1 —mult 4 .4 1 —mult 3:3 1 —mult 242 —mult -mult
4 E milttf, = E mi1®t?, o E mi1?t?, E milt, E™}

x2prob = PDPErl angi an[4,mu2,t] // Sinmplify

{%E*W“ (-6 +6E™2t _6mu2t -3mu22t2 -mu23t?), %E*”“Z‘ mi23t 3,

%EfrTUZt m.l22t2, EfrTu2t m2t, E4Tu2t}

Now, using direct enumeration,we can cal cul atethe probability that the SY STEM isin any one of
its possiblestates, based on the structurefunctionand the probability of each of the components
beingin any one of its possiblestates.

First, weformamatrix in the form needed:
pprobl={x1prob, x2prob};
And then calcul atethe result:

ans1=Syst enfronDi rect Enurmeration[p, phi, fphi, pprobl] //
Simplify
{% Ef(nul+nu2)t (48 Erru2t (_1+Enult> 48 EmJZI milt -
24 E™2t mu12t2 -8 E™t muadtd —nmultt? (2+2nmu2t +mu22t?)),

~ L iz (6+6mult +3mul?t2+nuldt?)

36
(6-6E™' +6mu2t +3nm22t2+m23t3), %—E"’“‘“’“‘Z” mi23t3
(6+6mult +3mui?t2+nmu1dt?), %E*“ml*"ﬂ”t2 (2ml1*t?+

2mul*mu2t3+mu22 (24 +24mult +12mul?t2+4mu1dtd s multt?)),

L pmimz) g g2 (6mu2 +3mul (L+mu2t) +nul?t (L+nu2t)),

6
E-MIm2 (1 emult +mu2t) |

Inreal life, wewould performa seriesof tests (see Kapur and Lamberson[1977]) to determinethe
valuesof muland mu2. Herewewill arbitrarily assumethat mulis1.2 andmu2is1.9. This
causesthe above expressionto read:

ansl = ansl /. {rmul->1.2, nmu2->1.9} // Sinplify

(1. %t (-1 EMOt 41 ERYY 12BNt 0. 72 EMOt 12 -
0.288 E-°' t3_-0.0864 t*-0.16416 t° -0.155952 t9),
-0.048 E*1t (1.33006 +t)
(2.61058 +1.16994 t +t2) (6 -6 EY°' +11.4t +10.83t2 +6.859 t3),
0.329232 E*1' t3 (1.33006 +t) (2.61058 +1.16994 t +t2),
0.155952 E*1' t2 (3.08605 +0.532163 t +t2) (3.75044 +3.8538 1t +1t2),
0.5472 E*1tt2 (548246 +3.02632t +1. t2), E>1t (1+3.11t)}

We can verify that the probability of the systembeingin SOME stateis one at least at onepointin
time (wecould draw a graph or solveanalyticallyto convinceourselvesof thisrelationfor all
non-negativet):

Plus @@ans1 /. t-> 3

1

Now, let’ sgraph the probabilitiesof the systembeingin any one of its possiblestates.

Pl ot [Eval uat e[ans1], {t,O0, 4},
Pl ot Range->{0, 1},
AxesLabel ->{"Time", "p(i,t)"},
Pl ot Styl e->{ Dashi ng[{0.017}],

Dashi ng[{0. 03}],
Dashi ng[{0. 03}],
Dashi ng[{0. 03}],
Dashi ng[{0. 03}],
Thi ckness[0. 001] },

Pl ot Legend->{"p(0,t)", "p(1,t)", "p(2,t)",

LegendPosi tion->{1, - 0. 4},

pa,t)

0.

0.

0.

0.

1

8t

6t

4 L

2+

"p(3,)", "p(4t)", "p(5.t)"},

m Measures

anslsys = Transpose[{f phi, ans1}];

anslsys /. t ->2 // Matri xForm

0

1
2
3
4
5

0. 187555
0. 410009
0. 159317
0. 159499
0. 0690071
0. 0146119

Expect edSt at e[anslsys /. t -> 2]

1.55623

LegendShadow >None] ;

---p(1,t
---p(2,t
---p(3,t
---p4,t
— p(5,t

Expect edSt at e[anslsys /. t -> 2] / Max [f phi]

0. 311246

St ateVari ance[anslsys /. t -> 2]

1.53033

Expect edTot al Qut put [ans1sys, t, True]

8. 45831

Expect edQut put [anslsys, t, 2, True]

6. 46482

Vari anceCOf Qut put UB[ans1sys, t, 2, True]

6. 55507

Expect edQut put [ans1sys, t, 2, True] /
Expect edTot al Qut put [ans1sys, t, True]

0. 764316

Pl ot [Expect edSt at e[ans1sys], {t, 0, 4},
AxeslLabel -> {"t", "E[¢(t)]1"}]

- Graphics -

Pl ot [Expect edCQut put [anslsys, t, T, Truel], {t, 0, 4},
AxeslLabel -> {"t", "CE[t]"}]

CE[]
8l

- G aphics -

Pl ot [St at eVari ance[anslsys], {t, O, 4},
AxeslLabel -> {"t", "V[¢(t)]"}]
Vig(t)]

1.75¢}
1.5¢
1.25¢

0.75¢
0.5}
0.25¢

- Graphics -

Tabl e [Upper St at esDwel | Ti me[ans1sys, t, j, Truel, {j, 0, 5}]

{3.40358, 1.89813, 1.51141, 1.00002, 0.645161, 0.}

Li feti neWei ght ed[anslsys, t, 2E" (-21)]

4.19442

Li feti neWei ght ed[anslsys, t, 932 (1/2) (3+2t)"(-5/2)]

2.92282

Li feti meWei ght ed[anslsys, t, (t /9) E* (-t /3)]

0. 627763

Li f eti neWei ght ed[ans1lsys, t, 2t EM (-t 2 2)]

3.43514
Plot [2E™ (-2t), {t, O, 6}, AxesLabel -> {"t", "U[t]"}]
Ut

0.6
0.5}
0.47
0.3;
0.2

0.1

1 2 3 4 5 6
- G aphics -

Plot [937(1/2) (3+2t)~(-5/2), {t, O, 6},
AxeslLabel -> {"t", "U[t]"}]

U[t]
1

0.8¢
0.6
0.4

0.2

1 2 3 4 5 6
- Graphics -

Plot [(t /9) EN (-t /3), {t, 0, 6}, AxesLabel -> {"t", "U[t]1"}]

0.09¢

0.08¢

0.07¢

0.06+
- Graphics -

Plot [2t EA (-t ~A2), {t, 0, 6}, AxesLabel -> {"t", "U[t]"}]
Ult]

0.8¢

0.6¢

0.4;

0.2

1 2 3 4 5 6

- G aphics -

Mixed Model Tutorial

= | ntroduction

Thisdocument considersthe general analysisof mixed systems. These may havenon-zero probabilities
of beingin any givenstate, superimposedover a continuousdistribution. Toillustratethe basic
techniquesinvolved, this document sometimesuses full Mathematica codeto solve problemsrather
than calling a Rel Pack functionto do that particulartask. Theideaisto makecertainsimplefunctions
more understandabl eto the user by makingtheir functionalitytransparent.

= SampleProblem 1

First, wedefinealist containingthe CDF sfor the state of each of the components:

di stlist={Bi nar yCDF[x, 0. 5], Uni f or ™M xedCDF[x, 0. 2, 0. 3],
Truncat edCDFI x. Chi Di stri butionl111}:

Herearethevaluesof each of these CDF sat x=0.1. Essentially,thisisalist of the probabilitiesthat
random variabledrawn from each of thesedistributionswould be 0.1 or lower.

distlist /. x->0.1
{0.5, 0.25, 0.0796557)}
Supposingthat thesedistributionsmodel ed the random variabl erepresentingthe state of a component,

and that a systemwas composedof a"parallel" (maximum)arrangementsof these components,the
followingfunctionreturnsthe probability that the systemisin or below state 0.1

Pl distlist,x-> 1]
0. 00995696
Assuminga"series"' (minimum)arrangementof these componentsin the system, we computethe

probability of beingin or below state 0.1 as follows. Aswewould expect, the probability of beingin
lower statesis higher for a seriessystemthan for aparallel system.

S[distlist,x->. 1]

0. 654871

Hereis agraphof the CDF of the systemin the seriescase:

Plot[S[distlist],{x,0,1. 1}, Pl ot Range->{0, 1}];
1,

0.8¢

0.6

0.4+

0.2¢

0.2 0.4 0.6 0.8 1
Hereis agraphof the CDF of the systemin the paralel case:

Plot[P[distlist],{x,0,1. 1}, Pl ot Range->{0, 1}];
1 -

0.8¢
0.6

0.4+

0.2¢

0.2 0.4 0.6 0.8 1
Herearethevaluesof all the component CDF’ sat x=0 and x=1, respectively:
{distlist /. x-> 0, distlist /. x-> 1}
{{0.5, 0.2, 0}, {1, 1, 1}}
Hereisthevalueof the parallel system CDF at x=0 and x=1, respectively:

{P[distlist,x->0], P[distlist,x->1]}

{0, 13}

Hereisthevalueof the seriessystem CDF at x=0 and x=1, respectively:

{S[distlist,x->0], S[distlist,x->1]}

{0.6, 1}
We can take advantageof our knowledgeof the particular distributionsthat we have sel ected.
Sinceweknow that the probability of the systembeingin any particul ar stateis zero except for

statesin theset { 0,1}, we can proceedfor the series case and find the probabilitiesof the system
beingin either its maximumor minimumstate:

ans=S[distlist];

{ans /. x-> 0, 1-(ans /. x-> (1-$Machi neEpsilon))}

{0.6, 0.0475966 }

= Reductionto Binary Results

Aswe can see, the methodol ogywe have used above reducesto the standard binary result for
parallel and seriessystems:

distlist2 = {Bi naryCDF[x, 0. 4], Bi naryCDF[x, 0. 8],
Bi naryCDF[x, 0. 9] };

1- P[di stli st 2, x- >0]

0.988

1-(1-0.4)*(1-0.8)*(1-0. 9)

0.988
Thefirst expressiongaveus the probability of beingin state 0, whichis why wehad to subtract
onefromit to get the probability of beingin state one. Of course, 1-(1-p1)(1-p2)(1-pI)isthewell

knownresult for the probability of abinary parallel systembeingin state 1 when the probability of
each of itscomponentsbeingin state 1 ispi.

Hereisthe analogousdemonstrationfor series systems.
1-S[distlist2, x->0]
0. 288

0.4*0.8*0.9

0. 288

= SampleProblem 2

Thisproblemwill be considerablymorecomplex. Wewill consider asystemwith 20 components,
eachwith adifferentdistribution. Someof the distributionswill be continuous, somewill be
discrete, somewill be binary, and somewill be mixed. Pleasesee attached sheet for a diagramof
thissystem. Notethat thereliability block diagramformfor "parallel" is used whenthe structure
function modul efor those componentsis M aximum,and the reliability block diagramform for
"series' is used when the structurefunction modulefor those componentsis Minimum.

Hereisthelist containingthe distributionsof the components:

d={Bi nar yCDF[x, 0. 5],
Uni f or mM xedCDF[x, 0. 2, 0. 3],
Truncat edCDF[x, Chi Di stri bution[1]],
Bi nar yCDF[x, 0. 432],
Bi nar yCDF[x, 0. 643],
Uni f or MM xedCDFJ[x, 0. 05, 0. 48],
Truncat edCDF[x, Normal Di stri bution[0.52,0.2]],
Truncat edCDF[x, Bet aDi stribution[0.7,0.31]],
Truncat edCDF[x, CauchybDi stri bution[0.3,2]],
Truncat edCDF[x, Chi SquareDi stri bution[1]],
Truncat edCDF[x, Exponenti al Di stribution[2]],
Truncat edCDF[x, Ext remeVal ueDi st ri bution[0.6, 3]],
Truncat edCDF[x, FRati oDi stri bution[5,7]],
Truncat edCDF[x, GanmaDi stri bution[0.8,0.3]],
Truncat edCDF[x, Lapl aceDi stri bution[0.2, 0.238]],
Truncat edCDF[x, LogNor mal Di stri bution[O0.2,1]],
Truncat edCDF[x, Logi sticDi stribution[0.222,0.6]],
Truncat edCDF[x, Rayl ei ghDi stri bution[1]],
Truncat edCDF[x, Student TDi stri bution[4]],
Truncat edCDF[x, Wei bul | Di stribution[.4,.9]]};

Herewe definethe structurefunctionfor the system, breakingit up into threemodulesfor clarity:

moda=S[{P[{P[{S[{d[[1]],d[[2]]}],d[[3]]}],
S[{P[{d[[6]].d[[7]]}],d[[4]],d[[5]]}]}],
di[8]]}];

modb=S[{d[[18]], P[{d[[19]],d[[20]]}]}];

mode=S[{P[{d[[16]],d[[17]]}],d[[15]]}];

modd=S[{P[{S[{d[[12]],d[[13]]}],d[[11]],d[[14]]}],
di[o]],d[[10]]}];

sys=P[{nodb, S[{ nodc, P[{ nodd, moda}]1}]}1;

Hereisthe computed CDF for the system, based on the abovedistributionsand structurefunction:

sys=(1-(1- Truncat edCDF[x, Rayl ei ghDi stribution[1]])*
(1-Truncat edCDF[x, St udent TDi stri bution[4]]*

Truncat edCDF[x, Wi bul | Di stribution[0.4,0.9]]))*

(1-(1- Truncat edCDF[x,
Lapl aceDi stribution[0.2,0.238]])*

(1-Truncat edCDF[x, Logi sti cDi stribution[0.222,0.6]]*

Truncat edCDF[x, LogNormal Di stri bution[0.2,1]])*
(1-(1-(1-Truncat edCDF[x,
CauchyDi stribution[0.3,2]])*

(1- Truncat edCDF[x, Chi Squar eDi stribution[1]])*
(1- Truncat edCDF[x, Exponenti al Di stribution[2]]*

(1- (1- Truncat edCDF[x,
ExtrenmeVal uebDi stri bution[0.6,3]])*

(1- Truncat edCDF x,
FRati oDi stribution[5,7]]))*

Truncat edCDF[x, GanmaDi st ri bution[0.8,0.3]]))*

(1-(1-Truncat edCDF[X,
BetaDi stribution[0.7,0.31]])*
(1- Truncat edCDF[x, Chi Di stribution[1]]*
(1-(1-Bi nar yCDF[x, 0. 4320000000000001]) *
(1- Bi naryCDF[x, 0. 643]) *
(1- Truncat edCDF[x,

Nor mal Di stri bution[0. 5200000000000001,
0.2]]*Uni f ormM xedCDF[x, 0. 05, 0.48]))*

(1-(1-BinaryCDF[x, 0.5])*
(1- Uni f or "M xedCDF[x, 0.2, 0.3]))))));

The Probability the Systemisin StateO:
sys /. x->0
0
The Probability the Systemisin State 1
1-(sys /. x->(1-$Machi neEpsilon))
0. 287569
The Probability that the Componentsarein State 0

N[d /. x->0,5]

{0.5, 0.2, 0, 0.568, 0.357, 0.05, 0.0046612, 0, 0.45261, O,

0, 0.29482, 0, 0, 0.21578, 0, 0.40854, 0, 0.5, 0}

The Probabibilitythat the Componentsarein State 1

N[1-(d /. x->(1-$Machi neEpsilon)), 5]

{0.5, 0.3, 0.31731, 0.432, 0.643, 0.48, 0.0081975,
0.000012004 , 0.39283, 0.31731, 0.13534, 0.58321, 0.48129,
0.022972, 0.017344, 0.57926, 0.21473, 0.60653, 0.18695, 0.35238}

Hereisalist of the componentswhich havea zero probability of beingin state0. It shouldbe
noted that if the systemdiagramis thought of as being onefor a binary system, andiif al the
componentsin any minimal cut are such that the probability of those componentsbeingin state 0
is 0, then the probability that the systemisin state0isO.

Flatten[Position[d /. x->0, 0]]

{3, 8, 10, 11, 13, 14, 16, 18, 20}

Note from the attached diagramthat one minimal cut set to thissystem, if wearethinkingof itina
binary sense, istheset {8, 10, 18} . The probabilitiesthat each of these componentsis0isO0, so
the probability that the systemisin state0is 0.

Hereisaplot of the CDFfor this system:

Pl ot [sys, {x, 0, 1. 03}];
1 L

0.8¢

0.6¢

0.2¢

0.2 0.4 0.6 0.8 1
Hereisaplot of 1-CDF, the "Reliability" for this systemat this particularmomentin time. Note
the non-zeroprobability of beingin state 1, as evidencedby the discontinuityin the graph at x=1.

= Reliability Measuresfor SampleProblem 2

Now that we havethe CDF for the system, any number of reliability measuresmay be calculated
for the system. We start with the probability of the systembeingin or aboveany particular state:

Pl ot[1-sys, {x, 0, 1. 01}, Pl ot Range- >{ 0, 1}];
1

0.8

0.6

0.4

0.2¢

0.2 0.4 0.6 0.8 1
It would a so be hel pful to defineafunctionwhichreturnsR(x) for any valueof x:
RSystenfcdf , rule_] := (1l-cdf) /. rule

RSyst enf sys, x->0.431]

0. 645831

CDFMean[cdf _, x_] := Nintegrate[1l-cdf,{x,0,Infinity}]
And computetheresult.

CDFMean[sys, X]

0. 613852

Thus, wefind that the expected state of the systemat thismomentin timeis 61% of its maximal
state.

= Dynamic Systems

Of course, any of thesetechniquesmay be appliedto dynamicsystems, for whichthe CDF sfor
each of the componentsis somefunctionof time. One need only use the desiredtime based
model. Let us assumea model for which the probability of beingin the maximal stateis some
non-zerovalue (for each component),the probabibility of beingin the minimal stateis some
non-zerovalue, and the remainingprobabilityis evenly distributed between0 and 1. Wewill
assumethat the probability of the systembeingin its minimal state exponentially increases, and
the probability of the systembeingin its maximal state graduallyincreases. Wewill assumea
decay rate of 1 for the component1, 2 for component2, and 3 for component3. The probability
of beingin either of thetwo discretestatesis 0.5.
d2={ Uni f or "M xedCDF[x, 0. 5(1- E*(-1t)), 0. 5E~(-1t)],
Uni f or mM xedCDF[x, 0. 5(1- E*(- 2t)), 0. 5EA(-2t)],
Uni f or mM xedCDF[x, 0. 5(1-E*(-3t)), 0. 5EM(-3t)1};

Let’ sgraphthe probabilitiesof beingin either of thetwo discretestatesfor componentoneas a
functionof time:

Pl ot [Eval uate[{0.5 (1-E~(-1t)),0.5 Er(-1t)}],{t,0, 4}];
0.5

0.4+
0.3¢

0.2¢

1 2 3 4
Let’ sconsider aparallel system of these components:
sys2=P[d2];

L et’ sexaminethe system CDF at a particular momentin time, let’ ssay at t=2.3. Notethe non-zero
probabilitiesof the systembeingin either state 1 or state 2.

Plot[sys2 /. t->2.3, {x, 0, 1.1}];
1 L

0.8+

0.6

0.4+

0.2¢

0.2 0.4 0.6 0.8 1
L et’ sask oursel veswhat the probabilityis of each of the componentsbeingin either of the discrete
statesat t=2.3:

The Probabibilitythat the Componentsarein State 0
N[d2 /. {x->0,t->2.3},5]
{0. 44987, 0.49497, 0.4995)
The Probabibility that the Componentsarein State 1
N[1-(d2 /. {x->(1-$Machi neEpsilon),t->2.3}), 5]

{0. 050129, 0.0050259, 0.00050389 }

Sincethe systemisin state 0 if all of the componentsisin state 0, wewould predict thefollowing
asthe probability of the systembeingin state O at thistime:

Times @ N d2 /. {x->0,t->2.3},5]

0.111225

Andsincethesystemisin state 1 if any of the componetsarein state 1, wewould predictthe
followingas the probability of the state of the systembeing 1 at thistime:

1-(Tinmes @@ (1-N[1-(d2 /. {x->(1-$MachineEpsilon),
t->2.3}),5]))

0. 0553796

Calculatedfrom the computed CDF (notethat the valuesareidentical):

The Probability the Systemisin StateO:
sys2 /. {x->0,t->2.3}
0.111225
The Probabilitythe Systemisin State 1
1-(sys2 /. {x->(1-$Machi neEpsilon),t->2.3})

0. 0553796

Let’ sexamineathreedimensional plot of the CDF of thissystemas afunctionof time. Notethat
thefina "jump" of thiscurveat x=1 has been omittedfor clarity.

Pl ot 30[sys2, {x,0,1},{t,0, 2.3},
AxesLabel ->{"x","t","F[x]"}];

Hereisthe Reliability of the systemat level x=0.431and t=2.3
RSyst en{ sys2, {x->0.431,t->2.3}]
0. 662001

And hereisthe expected state of the systemat that time:

CDFMean[sys2 /. t->2.3,X]

0. 563508

Thus, wefind that the expected state of the systemat thismomentin timeis 56% of its maximal
stateat t=2.3.

Now, |et’ sgraph the expected state of the systemas afunctionof time:

Pl ot [CDFMean[sys2 /. t->t0,x], {tO,0,5},
Pl ot Label ->"E[X] as a Function of Tine",
Pl ot Range- >{ 0, 1},
AxesLabel ->{"Tinme", "E[X] "}]

E[X] E[X] as a Function of Tine
1,

0.8¢

Ti ne

- Graphics -

Asthisgraphleadsoneto believe, the mean state of this system approachessomevalue
asymptoticallyast->Infinity. Thislimitingvaluemay be computeddirectly asfollows:

CDFMean[P[Tabl e[Uni f or MM xedCDF[x, 0.5, 0], {3}]11], X]

0. 53125

Hereisaplot of the hazard functionfor this dynamicsystem, as afunctionof time:

Pl ot 3D CDFHazar d[sys2, x, x0, t, tO0], {xO,0,0.99999},
{t0, 0, 5}, PlotLabel->"Hazard Function of sys2",
AxeslLabel ->{"x0","t0"}]

Hazard Function of sys2

- SurfaceG aphics -

Automobile Example

m New Function Definition

di screte[sys_,fphi_,phi_] :=
Modul e[{ ans, gf phi, gpprob, fi nans},
ans={ GenAns[(sys[O][[1]]), x1, fphi],

GenAns[(sys[0][[2]]).x2, fphi],

GenAns[(sys[O0][[3]]).x3,fphi],

GenAns[(sys[O][[4]]). x4, fphi]};
of phi =Transpose[First[ans]][[1]];
gppr ob=Transpose[#][[2]] & / @ ans;
fi nans={gf phi, Syst enfronDi r ect Enunerati on[

{gf phi, gf phi, gf phi, gf phi }, phi, gf phi, gpprob] };

m SystemC
(* Definition *)
phirawf x_] := Tinmes @@ X

sys[t_] := {PDF[Betabistribution[25/16,1], x1],
PDF[Bet aDi stri buti on[25/ 16, 1], x2],
PDF[Bet aDi st ri buti on[25/ 16, 1], x3],

(* Binary {0,1} *)

phi b[x_] := phiround[x, phiraw, {0, 1}]

di screte[sys, {0, 1/ 2, 1}, phi b]

0. 191404

(* Discrete {0,1/4,1/2,3/4,1} *)

phi [x_] := phiround[x, phiraw, {0, 1/4,1/2,3/4,1}]
di screte[sys,{0,1/8,3/8,5/8,7/8, 1}, phi]

0.12204

(* Continuous *)

NI ntegrate[x1 sys[O][[1]],{x1,0,1}]*
NI ntegrate[x2 sys[O0][[2]],{x2,0,1}]*
NI ntegrate[x3 sys[0][[3]].,{x3,0,1}]*
NI ntegrate[x4 sys[O][[4]].,{x4,0,1}]
0. 138237

m SystemD

(* Definition *)
phiraw x_] := (Log[x[[1]]+1]/Log[2])*
((E*x[[2]]-1)/(E- 1))~
(x[[3]]"4)*(Sart[x[[4]]1]1)// N
sys[t_] := {Truncat edPDF[x1,
Nor mal Di stribution[0.75,0.2]],
Tr uncat edPDF[x2,
Nor mal Di stribution[0.75,0.2]],
Tr uncat edPDF[x3,
Nor mal Di stribution[0.75,0.2]],

Tr uncat edPDF[x4,
Nor mal Di stribution[0.75,0.2]]}

(* Binary {0,1} *)

phi b[x_] := phiround[x, phiraw, {0, 1}]

di screte[sys, {0, 1/ 2, 1}, phi b]

0. 605048

(* Discrete {0,1/4,1/2,3/4,1} *)

phi [x_] := phiround[x, phiraw, {0, 1/4,1/2,3/4,1}]

di screte[sys,{0,1/8,3/8,5/8,7/8, 1}, phi]

0. 129745

(* Continuous *)

NI ntegrate[(Log[x1+1]/Log[2]) sys[O][[1]],{x1,0,1}]*
NI ntegrate[((E*x2-1)/(E-1)) sys[O0][[2]].,{x2,0,1}]*

NI nt egrat e[(x374) sys[O][[3]].,{x3,0,1}]*
NI ntegrate[(Sqrt[x4]) sys[O0][[4]],{x4,0, 1}]

0.131736

m SystemE
(* Definition *)
phirawx_] := (Log[x[[1]]+1]/Log[2]/4)+
((EMX[[2]]-1)/(E-1)/4)+

((x[[3]1710)/4)+
(Sart[x[[4]]11/4) // N
sys[t_] := {Truncat edPDF[x1,
Nor mal Di stribution[0.1,0.1]],
Truncat edPDF[x2,
Nor mal Di stribution[0.1,0.1]],
2 (1-x3),
Tr uncat edPDF[x4,
Nor mal Di stribution[0.1,0.1]]}
(* Binary {0,1} *)
phi b[x_] := phiround[x, phiraw, {0, 1}]
di screte[sys, {0, 1/ 2, 1}, phi b]

1. 06279 x10°°

(* Discrete {0,1/4,1/2,3/4,1} *)

phi [x_] := phiround[x, phiraw, {0, 1/4,1/2,3/4,1}]

di screte[sys,{0,1/8,3/8,5/8,7/8, 1}, phi]

0.1194

(* Continuous *)

NI nt egrat e[(Log[x1+1]/Log[2]/4) sys[O][[1]],{x1,0,1}]+
NI ntegrate[((E*x2-1)/(E-1)/4) sys[0][[2]].,{x2,0,1}]+

NI ntegrate[((x3710)/4) sys[O][[3]].,{x3,0,1}]+
NI ntegrate[(Sqrt[x4]/4) sys[O0][[4]],{x4,0,1}]

0. 151749

m SystemF
(* Definition *)

phiraw x_] :=
X[[1172 x[[2]]74 x[[3]]1"(1/2) x[[4]]1"(1/8)
sys[t_] := {Truncat edPDF[x1,
Wei bul I Di stribution[3/2,2]],
Truncat edPDF[x2,
Wei bul I Di stribution[3,4]],
Truncat edPDF[x3,
Wei bul I Di stribution[2,5]],
Tr uncat edPDF[x4,
Wei bul I Di stribution[6,3]]}

(* Binary {0,1} *)

phi b[x_] := phiround[x, phiraw, {0, 1}]

di screte[sys, {0, 1/ 2, 1}, phi b]

0. 388768

(* Discrete {0,1/4,1/2,3/4,1} *)
phi[x_] := phiround[x, phiraw, {0, 1/4,1/2,3/ 4, 1}]
di screte[sys,{0,1/8,3/8,5/8,7/8, 1}, phi]
0. 144999

(* Continuous *)

NI ntegrate[x172 sys[O0][[1]],{x1,0,1}]*
NI nt egrat e[x2"4 sys[0][[2]],{x2,0,1}]*

NI ntegrate[x37(1/2) sys[O0][[3]],{x3,0,1}]*
NI nt egrat e[x4*(1/8) sys[O][[4]],{x4,0,1}]

0.133113

Bicycle Example

m Function Definitions

discrete[sys_,x1_,x2_,fphi_,time_, phi_] :=
Modul e[{ ans, gf phi, gpprob, fi nans},
ans={ GenAns[(sys[tine][[1]]),x1,fphi],
GenAns|[(sys[time][[2]]),x2,fphi]};
of phi =Transpose[First[ans]][[1]];
gppr ob=Transpose[#][[2]] & / @ ans;
fi nans=Transpose[{ gf phi, Syst enfr onDi r ect Enuner ati on[
{gf phi, gf phi}, phi 3, gf phi, gpprob] }];

contavg[time_,sys_,phi_] := N ntegrate[phi[{x1,x2}]*
(Times @€ svslitinel).{x1.0.1}.{x2.0.1}1

sdcontavg[tine_,sys_,data_] := Mdul e[{datac},
dat ac=Mul ti Quadri c(dat a] ;
NI ntegrate[Ml ti Quadri c[{x1, x2}, dat a, datac] *

£ T otmmmna AC Avial &1 T) r..a N 11 r.n n 2111

m Common Information

phi[x_] := Times @@ X

phi 3[x_] := phiround[x, phi, {0, 3/8,5/8, 1}]

phi 4[x_] :

phi round[x, phi , {0, 1}]

test2={{{0, 0}, O}, {{1, 1}, 1},

{{0.4921976512515784, 0.6567022718937255},
0. 3232273157976671},

{{0. 4318405796090456, 0.916524025621182},
0. 395792266449867}

{{0.1817978201605658, 0.01905256469642804},
0.00346371473027877},

{{0.0875176290939841, 0.4669830661251967},
0. 0408692507743164} ,

{{0.5301873141694764, 0.822623711486269},
0. 4361446561650311},

{{0.5282877576882771, 0.983386652896693},
0.5195111297993741},

{{0.0813181165792199, 0.4985288836434664},
0. 04053942987822774},

{{0.05026429468732048, 0.5640697638801792},
0. 02835256883588061} ,

{{0.2926663140648067, 0.3993713978357307},
0.1168825549474928}

{{0.2748510578765808, 0.5112077448767638},
0. 1405059894740797} ,

{{0.1254410738042156, 0.1499798419835248},
0.01881363242739993},

{{0.949182608156626, 0.3951977675322207},
0. 3751148477239091},

{{0.6332434225526374, 0.4932775700897993},
0.3123647767521129},

{{0.5173420285475804, 0.4786737419110386},

A AATAAAAAAAFATATAY

m Systems

sysa[t_] := {Truncat edPDF[x1,
Nornal Di stribution[E*(-3/10t) // N,
-(BEM(-3/10 t)-1/2)72+1/4+1/10 /] N,
Truncat edPDF[x2,
Normal Di stribution[EN(-5/10 t) // N,
-(EM(-5/10 t)-1/2)"2+1/4+1/10 // N1};

sysb[t _] {Triangul ar PDF[x1, 4/ 5],

Tri angul ar PDF[x2, 4/ 5] };

{ PDF[Bet aDi stri bution[25/16, 1], x1],
PDF[Bet aDi stri bution[25/ 16, 1], x2] };

sysc[t_]

m Expected System States - A

cont avg[1, sysa, phi]

0.361647

sdcont avg[1, sysa, t est 2]

0. 368992

di screte[sysa, x1,x2,{0, 1/ 4,1/ 2,3/ 4,1}, 1, phi 3]

0. 404406

di screte[sysa, x1, x2,{0,1/2, 1}, 1, phi 4]

0. 448679

m Expected System States - B

cont avg[1, sysb, phi]

0. 36

sdcont avg[1, sysb, t est 2]

0. 365522

di screte[sysh, x1,x2,{0,1/4,1/2,3/4, 1}, 1, phi 3]

0. 411163

di screte[sysh, x1, x2,{0, 1/ 2, 1}, 1, phi 4]

0. 472656

m Expected System States - C

cont avg[1, sysc, phi]

0.371802

sdcont avgl[1, sysc, t est 2]

0. 380515

di screte[sysc, x1,x2,{0,1/4,1/2,3/4, 1}, 1, phi 3]

0. 411276

di screte[sysc, x1, x2,{0,1/2, 1}, 1, phi 4]

0. 437498

Continuous Bounds Calculations

Note: Somegroupsof cellshavebeen " closed" in this notebook for space. Feel freeto openthemwhen
reading this notebookin Mathematica.

m Examples 1 and 2 (n=2)

f={1, 1};

i np={{{0,0},0},{{0,1/2},1/2},{{1/2, 0}, 1/ 2},
{{1/2.1/2}y.3/4} . {{1.1}.1}}:

f2 = {Truncat edPDF[x, Wi bul | Di stri bution[3/2,2]],
Truncat edPDFI x. Wei bul | Di stributionl3.411}

f2c = {NonTruncat edCDF[x, Wei bul | Di stribution[3/2,2]],
NonTr uncat edCDFI x. Wi bul I Di stri butionl3.411}

f2in =Truncat edPDF[x1, Wi bul | Di stribution[3/2,2]]*
Truncat edPDFl x2. Wei bul | Di stributionl3.411

m Data Sets

m Pictures (Example 1/2, n=2)

= Examplel

Pl ot 30[Phi Max[{ x1, x2}, i np] , {x1, 0, 1}, {x2, 0, 1},

AxeslLabel - >{Subscript[x, 1], Subscri pt[x, 2], "smax(x)"},
Dl nt Panna_-SSifn 11 SN 11U fn 1111

- SurfaceG aphics -

Pl ot 3D Phi M n[{x1, x2},inp], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscri pt[x, 1], Subscript[x, 2], "smi n(x)"
Pl ot Range- >{{0, 1}, {0, 1}, {0, 1}}]

- SurfaceG aphics -

m Example2

Pl ot 300 Phi Max[{ x1, x2}, test 2], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscri pt[x, 1], Subscri pt[x, 2], "smax(x) "},
Pl ot Range- >{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 3D Phi M n[{ x1, x2}, test 2], {x1,0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscript[x, 1], Subscript[x,2],"sm n(x)"},
Pl ot Range- >{{0, 1}, {0, 1}, {0, 1}}]

- SurfaceG aphics -

Pl ot 3D Phi Max[{x1, x2}, test2b], {x1, 0, 1}, {x2, 0, 1},
AxesLabel - >{ Subscript[x, 1], Subscri pt[x, 2], "smax(x)"},
Pl ot Range- >{{0, 1}, {0, 1}, {0, 1}}]

- SurfaceG aphics -

Pl ot 300 Phi M n[{x1, x2}, test 2b], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscript[x, 1], Subscript[x,2],"sm n(x)"},
Pl ot Range->{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 30 Phi Max[{ x1, x2}, test 2c], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscri pt[x, 1], Subscri pt[x, 2], "smax(x) "},
Pl ot Range- >{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 300 Phi M n[{x1, x2}, test 2c], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscript[x, 1], Subscript[x,2],"sm n(x)"},
Pl ot Range->{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 300 Phi Max[{x1, x2}, test 2d], {x1, 0, 1}, {x2, 0, 1},
AxesLabel - >{ Subscript[x, 1], Subscri pt[x, 2], "smax(x)"},
Pl ot Range->{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 300 Phi M n[{x1, x2}, test 2d], {x1, O, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscript[x, 1], Subscript[x,2],"sm n(x)"},
Pl ot Range->{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 30 Phi Max[{ x1, x2}, test 2e], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscri pt[x, 1], Subscri pt[x, 2], "smax(x) "},
Pl ot Range- >{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 300 Phi M n[{ x1, x2}, test 2e], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscript[x, 1], Subscript[x,2],"sm n(x)"},
Pl ot Range->{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 30 Phi Max[{ x1, x2}, test 2f], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscri pt[x, 1], Subscri pt[x, 2], "smax(x) "},
Pl ot Range- >{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 300 Phi M n[{x1, x2}, test 2f], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscript[x, 1], Subscript[x,2],"sm n(x)"},
Pl ot Range->{{0, 1}, {0, 1}, {0, 1} }]

- SurfaceG aphics -

Pl ot 300 Max[{x1, x2}], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscri pt[x, 1], Subscri pt[x, 2], "max(x)"}]

- SurfaceG aphics -

NI nt egr at e[Max[{x1, x2}], {x1, 0, 1}, {x2, 0, 1}]

0. 666667

m Misc Verifications (Examples 1 and 2)

= Examplel

Bounds?2[i np, f]

(0. 4375, 0.9375}

= Example2

Bounds2[test 2, f]

{0.503475, 0.805656 }

NI nt egrat e[Phi M n[{x1, x2}, test 2],
{x1,0,1},{x2,0,1}]

0.503117

NI nt egr at e[Phi Max[{x1, x2}, test 2],
{x1,0,1},{x2,0,1}]

0. 805417

Bounds?2[test 2, f 2c, 0]

{0. 704411, 0.927995 }

Bounds?2[t est 2b, f 2c, 0]

{0. 725887, 0.866069 }

Bounds?2[t est 2c, f 2c, 0]

{0. 753227, 0.851401}

Bounds?2[t est 2d, f 2c, 0]

(0.776228, 0.846707 }

Bounds?2[t est 2e, f 2c, 0]

{0.782112, 0.844489 }

Bounds?2[t est 2f, f 2c, 0]

{0.783856, 0.84045}

NI nt egr at e[f 2i n* Phi Max[{x1, x2},test 2],
{x1, 0,1}, {x2,0, 1}]

0.927716

NI nt egrat e[f 2i n*Phi M n[{x1, x2},test 2],
{x1, 0,1}, {x2,0, 1}]

0. 703564

NI nt egrat e[f 2i n*Max[{x1, x2}], {x1, 0, 1}, {x2, 0, 1}]

0. 810897

m Example2 RMS Error Calculations
phi 2[x_] := Max[x]

Phi M nRVBError [t est 2, phi 2, 10]

0. 298629

Phi MaxRVBEr r or [t est 2, phi 2, 10]

0.164497

m Example 3 (n=4)

sysi = {Truncat edPDF[x, Wi bul | Di stri bution[3/2,2]],
Truncat edPDF[x, Wei bul | Di stri bution[3,4]],
PDF[Bet aDi stri buti on[25/ 16, 1], x],
Truncat edPDF[x, Nor mal Di stri bution[0.75,0.2]]}

sysi ¢ = {NonTruncat edCDF[x, Wi bul | Di stribution[3/2,2]],
NonTr uncat edCDF[x, Wei bul | Di stribution[3,4]],
CDF[Bet abi stri bution[25/ 16, 1], x],
NonTr uncat edCDF[x, Nor mal Di stri bution[0.75,0.2]]}

sysi n =Truncat edPDF[x1, Wei bul | Di stri bution[3/2,2]]*
Truncat edPDF[x2, Wei bul | Di stribution[3,4]]*
PDF[Bet aDi st ri buti on[25/ 16, 1], x3] *
Truncat edPDF[x4, Nor mal Di stri bution[0.75,0. 2]]

m Data Set " data" ...

m Misc Verifications (Example 3)
Bounds2[data[[1,{1,2,3}]].{1,1,1,1}]
{0.0141986 , 0.980771 }
1-(Times @data[[1,3,1]])*(1-data[[1,3,2]])
0.980771
Bounds2[data[[1,{1,2,3}]],sysi]

{0. 0690306, 0.999928 }

Bounds?2[data[[1]], sysic, 0]

{0.377211, 0.973481}

Bounds?2[data[[2]], sysic, 0]

{0.285189, 0.968605}

Bounds?2[data[[3]], sysic, 0]

{0.190256, 0.951458}

Discrete Bounds Calculations

m Discrete Bounds Example

First, we definethe system:
phi[x_] := Select[systab,#[[1]]==x & 1][[1, 2]]
fphi = Range[0, 5]

(0, 1, 2, 3, 4, 5)

p = {Range[0, 5], Range[O0, 4]}

({0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4}}

systab = {{{0, 0}, 0},
{{1, 0}, 0},
{{2,0}, 1},
{{3,0}, 1},
{{4,0}, 1},
{{5, 0}, 1},
{{0, 1}, 0},
{{1,1}, 0},
{{2,1}, 2},
{{3,1}, 2},
{{4,1}, 2},
{{5,1}, 2},
{{0, 2}, 0},
{{1,2}, 3},
{{2, 2}, 3},
{{3,2}, 3},
{{4, 2}, 3},
{{5, 2}, 3},
{{0, 3}, 0},
{{1,3},3},
{{2,3}, 4},
{{3,3},4},
{{4,3},4},
{{5,3},5},
{{0, 4}, 0},
{{1,4},3},

We now assumethat we have knowledgeof only SOME of the structurefunctionvalues:

systab2 = {{{o,
{{2,
{{5,
{{5,
{{o,
{{1,
{{s3,
{{5,
{{o,
{{5,

0},
0},
1},
2},
3},
3},
3},
3},
4},
4},

0},
1},
2},
3},
0},
3},
4},
5},
0},
5}};

Now we comparethe structurefunctiongraph of the "true" structurefunctionto the upper and
lower boundson it created from knowledgeof the "reducedset” only:

<<G aphi cs‘ G aphi cs3D

Bar Chart 3D[Tabl e[phi [{x1, x2}], {x1, 0, 5}, {x2, 0, 4}],
Vi ewPoi nt - >{-1. 819, - 2. 233, 1.775},
Axeslabel - >{"x1","x2"},
Pl ot Label - >"phi [x] "]

- Graphi cs3D -

Bar Chart 30] Tabl e[Phi M n[{x1, x2}, syst ab2],
{x1,0,5},{x2,0,4}],
Vi ewPoi nt - >{-1. 819, - 2. 233, 1.775},
Axeslabel - >{"x1","x2"},
Pl ot Label - >"phi [x] "]

- Graphi cs3D -

Bar Char t 30] Tabl e[Phi Max[{x1, x2}, systab2],
{x1,0,5},{x2,0,4}],
Vi ewPoi nt - >{-1.819, -2. 233, 1.775},
AxeslLabel - >{"x1","x2"},
Pl ot Label - >"phi [x]"]

- Graphi cs3D -

Now let’ sassumethat each of the states of each componenthas the foll owingprobability of
oceurring:

15, 0. 05},

pprob = {{0.1,0.2,0.3,0.2,0.
{0.2,0.2,0.3,0.1,0. 2}};

Herearethe probabilitiesof the SY STEM beingin any of its possiblestates(from 0 to 5), for both
the full set and our boundson the reduced set:

anse=Syst enfr onDi r ect Enuner ati on[p, phi, f phi, pprob]

{0.18, 0.14, 0.14, 0.33, 0.165, 0.045}

ansl| =Syst enfr onDi r ect Enuner ati onLow p,
syst ab2, f phi, pprob]

{0.24, 0.465, 0.01, 0.165, 0.105, 0.015}

ansh=Syst enfr onDi r ect Enuner ati onHi gh[p,
syst ab2, f phi, pprob]

{0.1, 0.1, 0.26, 0.29, 0.05, 0.2}

Hence, we havethe followinglimits on the reliability (here, expected state) of the systembased on
the reduced set:

{ansl,ansh} . fphi

(1.475, 2.69}

Thismay be comparedto the "true" val ue, based on compl eteknowledgeof the entire structure
function:

anse . fphi

2.295

m Reduced Boundary Point Sets

We now turn to the question of what should be doneif knowledgeof the boundary point sets
(pathsand cuts, in the binary case) is not compl ete.

First, let’ sconsider a systemthat in reality is a seriesarrangementof four binary components. The
four minimal cutsfor such asystemisasfollows:

cuts={{1},{2},{3},{4}};
We now writethisin "boundary point" form, for consi stency with multistatecal cul ations:

ubps=UBPFr omCut s[cut s, 4]

{{{0, 1, 1, 13}, O, Upper, Real }, {{1, 0, 1, 1}, O, Upper, Real },
{{1, 1, 0, 1}, 0, Upper, Real }, {{1, 1, 1, 0}, O, Upper, Real }}

Hereis atableof the structurefunctionvaluefor all possibleval uesof the components:

sysarray[ubps_List] :=
{#, Syst enft at eFr onUBP[ubps, {0, 1} ,#]}& / @
(Appl y[List, Flatten[Array[Uni que[],

Tabl e[2, {Length[ubps[[1,1]]]1}11].2]-1)

ubps

{{{0, 1, 1, 13}, O, Upper, Real }, {{1, O, 1, 1}, O, Upper, Real },
{{1, 1, 0, 1}, 0, Upper, Real }, {{2, 1, 1, 0}, O, Upper, Real }}
sysar ray|[ubps]
{{{0, 0, 0, 0}, O}, ({0, O, O, 1}, O}, {{0O, O, 1, O}, O},
{{o0, 0, 1, 13}, 0}, {{O, 1, O, O}, O}, {{O, 1, O, 13}, O},
{{0, 1, 1, 0}, O}, {{O, 1, 2, 1}, O}, {{2, O, O, O}, O},
{{1, 0, O, 13}, O}, {{1, O, 2, O}, O}, {{2, O, 1, 1}, O},
{{1, 1, 0, 0}, O}, ({1, 1, 0, 1}, O}, {{2, 1, 1, O}, O},
{{1, 1, 1, 13}, 1}}

Now let’ sconsider the case where one of the paths (correspondingto the minimal cut consistingof
component?2) is missing:

sysarray|[Drop[ubps, {2}]]

{{{0, 0, 0, O}, O}, {{O, O, O, 1}, O}, {{O, O, 1, O}, O},
{{o, 0, 1, 13}, 0}, {{O, 1, O, O}, O}, {{O, 1, O, 1}, O},
{{o0, 1, 1, 0}, O}, {{O, 1, 1, 1}, O}, {{1, O, O, O}, O},
{{1, 0, 0, 1}, 0}, {{1, O, 1, O}, O}, {{1, O, 1, 13}, 1},
{{1, 1, 0, 0}, O}, {{1, 1, O, 1}, O}, {{1, 1, 1, O}, O},
{{1, 1, 1, 13}, 1}}

Notethat this structurefunctionis still coherent, and if wedid not know in advancethat a cut was
absent we would have no way of telling this based upon the resultswe obtained from our reduced
cut set. Thissuggeststhat, unlikethe scattered-datacasewhereit is CLEARwhat is missingand
that our input datais incomplete, in caseswhereboundary points are missing strong assumptions
would haveto be made about what is missingin order to takethat fact into account. Attempting
this may be of questionablevalue.

One exceptionto this may be a multistatecase whereboundary pointsare not givenfor any level
below somelevel k. Inthiscase, we may reasonablytakethisto meanthat levelsof performance
for the systembelow level k arenot of interestto the customer, and to set the system state
associatedwith any componentlessthan (in the vector-comparisonsense) any of the lower
boundary pointsof level k to zero.

Terje Aven Example

m Introduction

Thisexamplefollowsonegivenin T. Aven, " On performancemeasuresfor multistatemonotone
systems", Reliability Engineeringand System Safety, vol 41, 1993, pp 259-266.

m System Definition

First, we definethe system under consideration, using the giveninformation:
p=1{{01} {0,1}, {0,1,2} };
phi[x_] = Mn[x[[1]] + x[[2]], x[[3]]]
fphi = {0,1,2};

pprob = {{0.04,0.96}, {0.04,0.96}, {0.01,0.02,0.97}};

m System Distribution Calculation

Now, using the giveninformation,we cal culatethe distributionof the entiresystem. Theanswer
providedbelow isin theform of { P[phi=0], P[phi=1], P[phi=2]} .

ans = SystenfronDi rect Enuneration[p, phi, fphi, pprob]

{0.011584, 0.094464, 0.893952}

To check our work against the text, we request this answer in the form of { P[phi>=0], P[phi>=1],
Pphi>=2]}.

PTo{ ans]

{1, 0.988416, 0.893952 }

Asafurther check, we cal cul atethe same systembased on the given minimal paths (lower
boundary points), and check that the sameresultsare turned as when the structurefunctionwas
used directly.

I bps = {{{1,1,2}, 2, "Lower", "Real"},

{{0,1,1}, 1, "Lower", "Real"},
{{1,0,1}, 1, "Lower", "Real "}};

Syst enfr onlLBPI ncl usi onExcl usi on[p,
| bps, f phi, pprob] ==ans

True

Now, we assembl ethe system matrix whichis utilized by succeedingreliability measures

sys = Systemvatri x[fphi, ans]

({0, 0.011584 }, {1, 0.094464 }, {2, 0.893952 })}

= Reliability M easureCalculation

m Expected State

First, we calculatethe expected state of the system, scaled by the maximal state of the system
maxstate = First[Last[sys]];

Expect edSt at e[sys] / naxstate

0.941184

m L ost Output
Accordingto the problem statement, we wish to consider atime period of oneyear, wherethe

desiredtimeunitis hours. Thus, weshall performthese computationswith thetarget timet* =
8760.

= Expected Value

First, we cal culatethe expectedlost output for any timein the futuret*.

el o = ExpectedLost Qut put[sys, t, tstar]

0.117632 tstar

Now, we cal culatethis measurefor a particularvalue of t*, that is the customer’ gime of interest,
t*=8760.

elo /. tstar->8760

1030. 46

= Variance

We can cal culatean upper bound for the varianceof thisresult, based on the use of Schwartz's
inequality.

voou = VarianceCOf Qut put UB[sys, t, 8760]
9.74281 x10°
The standarddeviationis thus (in hours):

Sqgrt [voou]

3121. 35

IEEE Paper Calculations

m Function Definitions

Ex3Cal c[sys_,data_,rsq_:(1/2),ag_:2] := Mdul e[{dat ac},
datac=Mul ti Quadri c(C data, rsq];
NI nt egrat e[Mul ti Quadric[{x1, x2, x3, x4}, dat a, dat ac, rsq] *
(Times @sys), {x1,0,1},{x2,0,1},{x3,0,1},{x4,0,1},

m Examplel

i np={{{0,0}, 0}, {{0,1/2},1/2},{{1/ 2,0}, 1/2},
{11/2.1/23.3/4Y. 011,13, 1Y
i npc=Mul ti QuadricCinp, 1/ 6]

{2. 03356, -0.80133, -0.80133, -0.241413, 0.272716}

Show Pl ot 3D[Mul ti Quadri c[{x1, x2},inp,inpc, 1/6],
{x1, 0,1}, {x2, 0, 1},
Di spl ayFuncti on->ldentity],
Graphics3D[Point /@Flatten /@i np,
Di spl ayFuncti on->ldentity],
Di spl ayFuncti on->$Di spl ayFuncti on,
AxesLabel - >{ Subscript[x, 1],

Subscri pt[x, 2],
"ol vY"11

- Graphi cs3D -

m Example?2

phi 2[x_] := Max[x]

Pl ot 300 phi 2[{ x1, x2}], {x1, 0, 1}, {x2, 0, 1},
AxeslLabel - >{ Subscri pt[x, 1], Subscript[x, 2],
Max[Subscript[x, 1], Subscript[x, 2]]}]

- SurfaceG aphics -

m test2 data

test2={{{0, 0}, O}, {{1, 1}, 1},

{{0.05382814230747877, 0.5269933099816168},
0. 5269933099816168}

{{0.919453745115708, 0.745936810438473},
0.919453745115708}

{{0.07700710503691687, 0.5360976784253796},
0. 5360976784253796} ,

{{0.4839118816503948, 0.01681316095999332},
0. 4839118816503948}

{{0.2600614719159675, 0.846481126833969},
0. 846481126833969},

{{0.1739922019402756, 0.7211021773922957},
0.7211021773922957},

{{0.2188129353828022, 0.7736049138734915},
0. 7736049138734915}

{{0. 7529625079372377, 0.1613917491155758},
0. 7529625079372377},

{{0.2389423683429295, 0.5249468545903034},
0. 5249468545903034} ,

{{0.4831361478896971, 0.779426955843833},
0. 779426955843833}

{{0.1907266505849009, 0.06138568074620764},
0. 1907266505849009} ,

{{0.836819888375213, 0.1667087053726033},
0. 836819888375213},

{{0.1368985082774221, 0.5343923707645909},
0. 5343923707645909} ,

{{0.917366143259505, 0.4207718949341304},
0.917366143259505}

{{0.05989140324050526, 0.998294692339211},
0.998294692339211},

{{0. 4334542616091103, 0.4039587339741371},
0. 4334542616091103} } ;

test2c=Mul ti Quadric(test2, 1/ 6]

{4.16814, 0.778698, -25.6014, 0.300392, 24.6319, -0.34898,
-5.33281, -6.17273, 11.4533, -5.67398, -16.3528, -0.248098,
-3.27014, 4.63301, 11.1447, -2.23432, -0.440217, 9.2096}

Show[Pl ot 30 Mul ti Quadric[{x1, x2},test2,test2c, 1/6],
{x1,0,1},{x2,0, 1},
Di spl ayFuncti on->l dentity],
Graphics3D[Point /@((Flatten / @test2)+
Tabl e[{0, 0,0. 01}, {Length[test2]}]),
Di spl ayFuncti on->ldentity],
Di spl ayFuncti on->3$Di spl ayFuncti on,
AxeslLabel - >{ Subscri pt[x, 1], Subscri pt[x, 2],
"s(x)"}]

- Graphi cs3D -

Mil ti Quadri cRVSError[test?2, phi2, 10, 1/ 6]

0. 024003

Shepar dRVSEr ror [t est 2, phi 2, 10]

0. 10636

t heo=NI nt egr at e[Max[{ x1, x2}], {x1, 0, 1}, {x2, 0, 1}]

0. 666667

ans=Nl nt egrat e[Mul ti Quadri c[{x1, x2}, test2,test2c, 1/ 6],
{x1, 0, 1}, {x2, 0, 1}]

0. 66521

Abs[1- ans/ t heo]

0.00218459

Mul ti Quadri cRVMSError[test2, phi2,10,0.22]
0. 0238958

m test3data

test3={{{0, 0}, 0}, {{O.
0. 361890337628408}
{{0.05382814230747877,
0. 5269933099816168} ,
{{0.059891403240505286,
0. 998294692339211},
{{0.07700710503691687,
0.5360976784253796} ,
{{0. 1288260893700694,
0. 2054324240068765} ,
{{0. 1368985082774221
0. 534392370764591},
{{0.1441739471281251
0. 3365323130588904} ,
{{0.1739922019402756
0.7211021773922957},
{{0. 1858624062833268,
0.5022053753849117},
{{0. 1907266505849009,
0. 1907266505849009}
{{0. 2188129353828022
0. 7736049138734915}
{{0. 2389423683429295
0. 5249468545903035}
{{0.2491451016095178
0.2491451016095178}
{{0.2600614719159675
0. 846481126833969},
{{0. 2754760526305477
0.7214151103017512},

002290222063174745

0

0.

0

. 361890337628408},

0.5269933099816168},
0. 998294692339211},

0. 5360976784253796},

. 2054324240068765} ,
. 534392370764591},

. 3365323130588904},
. 7211021773922957},
. 5022053753849117},
. 06138568074620764},
. 7736049138734915},
. 5249468545903035} ,
. 1190804460287405} ,
846481126833969},

. 7214151103017512},

{{0.347855773201758, 0.1698734038050016},

0. 347855773201758}
{{0. 4116506311730054,
0. 782468090275657}
{{0. 4334542616091104,
0. 4334542616091104} ,
{{0. 4350075078928447
0.6212858214136522},
{{0. 4435519748103141
0. 5750494383147284}
{{0. 4831361478896972
0. 7794269558438331}
{{0. 4839118816503948
0. 4839118816503948}
{{0. 4858841198676993,
0. 975341978053681},
{{0.5652062120708216
0. 5652062120708216}
{{0. 6940323014408909
0. 6940323014408909}

0

0.

. 782468090275657},
4039587339741371},
. 6212858214136522},
. 5750494383147284},
. 7794269558438331},
. 01681316095999332},
. 975341978053681},

. 07435512660557503},

. 2797875506124515}

{{0. 6963225235040657, 0.6416778882408596},
0. 6963225235040657}

{{0.7472294513062484, 0.933371550073869},
0. 933371550073869} ,

{{0.7529625079372378, 0.1613917491155758},
0. 7529625079372378},

{{0.836819888375213, 0.1667087053726033},
0. 836819888375213},

{{0. 838006633081569, 0.3323319715799101},
0. 838006633081569} ,

{{0.888781950309773, 0.1640393654989242},
0. 888781950309773},

{{0.917366143259505, 0.4207718949341304},
0. 917366143259505} ,

{{0.919453745115708, 0.7459368104384731},
0.919453745115708},

{{0.936205142028753, 0.3874053135293446},
0.936205142028753}, {{1, 1}, 1}};

Mul ti Quadri cRMSError[test3, phi2, 10, 1/ 6]

0.0153861

m Example3

m DefineDistributionsand StructureFunctions

sysi = {Truncat edPDF[x1, Wi bul | Di stri bution[3/2,2]],
Truncat edPDF[x2, Wei bul | Di stribution[3,4]],
PDF[Bet aDi stri bution[25/ 16, 1], x3],
Truncat edPDF[x4, Normal Di stri bution[3/4,1/5]]};

(Log[x[[1]]+1]/Log[2]/ 4)+
((E*x[[2]]-1)/(E-1)/4)+
((x[[3]173)/4)+
(Sart[x[[4]11/4) /] N

((x[[1]]17(5/6))/4)+
((x[[2]117(2))/4)+
((x[[3117(3))/4)+
((x[[4]11~(3/2))14) I/ N

phi rawa[x_]

phi rawb[x_]

phi rawc[x_] (x[[1]]17(1/3))*
(x[[2]]1"(4/3))*
(x[[3]]17(1/4))*

(x[[4117(2/5)) 11 N

m Find Theoretical Results

{

NI nt egrat e[(Log[x1+1]/Log[2]/4) sysi[[1]],{x1,0,1}]+
NI ntegrate[((E*x2-1)/(E-1)/4) sysi[[2]],{x2,0,1}]+
NI ntegrate[((x373)/4) sysi[[3]],{x3,0,1}]+

Nl ntegrate[(Sqrt[x4]/4) sysi[[4]],{x4,0,1}],

NI ntegrate[((x17(5/6))/4) sysi[[1]],{x1,0,1}]+
Nl ntegrate[((x27(2))/4) sysi[[2]],{x2,0,1}]+
NI ntegrate[((x37(3))/4) sysi[[3]],{x3,0,1}]+
NI ntegrate[((x47(3/2))/4) sysi[[4]].,{x4,0,1}],

Nl ntegrate[(x17(1/3)) sysi[[1]],{x21,0,1}]*
NI ntegrate[(x27(4/3)) sysi[[2]],{x2,0,1}]*
Nl ntegrate[(x37(1/4)) sysi[[3]],{x3,0,1}]*
NI nt egrate[(x47(1/5)) sysi[[4]],{x4,0, 1}]

}
{0. 620369, 0.542374, 0.444722)

= data

(* Data bel ow was produced with:
n=20;

dat asi t es=ExtremaAdd[{#, 0} & / @ Randontenerate[n-2, 4]];

data={{#[[1]],phirawa[#[[1]]]} & / @dat asi t es,
{#[[1]],phirawo[#[[1]]]}& / @dat asi t es,
{#[[1]],phiranc[#[[1]]]1} & / @dat asi tes};
*)

data = {{{{0, 0, 0, O}, O}, {{1, 1, 1, 1}, 1.}
{{0.5236573143475254, 0.82631728719576
0.5847735478816752, 0.1475133296028847},
0. 4848393960576952} ,
{{0.7542332254244829, 0.836248729294307,
0. 4896071937147578, 0. 1408316021503213},
0. 5161324083853068}
{{0.7095328663615365, 0.5052520218728464
0. 03608599719979527, 0.4951690349791916},
0. 4649812409828609}
{{0. 8517075323667031, 0.4163584719878832
0. 3069451692950627, 0.1196398595058461}
0. 3910537523113055} ,
{{0. 655104475602236, 0.3225573080724096,
0. 7336720470871906, 0. 7443192124240596}
0. 5515276254308965}

{{0.08307452145984999, 0.3529998609974765
0.139341639182566, 0.5210415799360321},
0. 2715097077502861}
{{0.5594172071123244, 0.5266825738017164
0. 554568091300891, 0.3735282503331474},
0. 4565548233382118},
{{0.805183981687842, 0.6904338445074102,
0. 06496089758613312, 0.232696648182826},
0. 4784073030269244} ,
{{0.09565111532630488, 0.1851818226345636,
0. 02887490038633783, 0.7375276132036344},
0. 2772506406722665}
{{0. 2439435829596022, 0. 7688233506466804
0.7219297310912749, 0.6178877536977881},
0. 5376788586073749} ,
{{0.5888391073573663, 0.446266042574271
0. 988257684004084, 0.8735685412737289},
0. 7237874378123696}
{{0.5057645858975162, 0.09326618157679439,
0. 8489160448215178, 0.3525269613376964},
0. 4632262643042111},
{{0.9463473787851921, 0.5665836077750778
0. 2943479535206274, 0.978998711004549}
0. 6048297819899635}
{{0.1411633970973502, 0.8761497632676679
0. 2293870559344944, 0.7463020628217231},
0. 4705455140162648} ,
{{0.04551228177104538, 0.6909679406331043,
0. 2005121555481566, 0.008774449618088858},
0. 1863466482288775},
{{0.8015686988114429, 0.9221445899864239
0. 4785824244568814, 0.3908866959203006}
0. 6163962778780862}
{{0.2127295914540769, 0.4758785474121528
0. 4903247404527972, 0.5173181546465722},
0. 3675154806989664} ,
{{0. 7069650055565609, 0.3826123658353584
0. 6414086956312789, 0.1647911933088755},
0. 4281305122692342} } ,
{{{o, 0, 0, 0}, O}, {{1, 1, 1, 1}, 1.},
{{0.5236573143475254, 0.82631728719576
0. 5847735478816752, 0.1475133296028847},
0. 380674911768668} ,
{{0. 7542332254244829, 0.836248729294307,
0. 4896071937147578, 0.1408316021503213},
0. 4150160920218085} ,
{{0.7095328663615365, 0.5052520218728464
0. 03608599719979527, 0.4951690349791916},
0. 3387658138468705},
{{0. 8517075323667031, 0.4163584719878832
0. 3069451692950627, 0.1196398595058461},
0. 2796138690126095} ,
{{0. 655104475602236, 0.3225573080724096,
0. 7336720470871906, 0. 7443192124240596}

0. 4610163652696073},
{{0.08307452145984999, 0.3529998609974765
0.139341639182566, 0.5210415799360321},
0.1572957417571815},
{{0.5594172071123244, 0.5266825738017164
0.554568091300891, 0.3735282503331474},
0. 3231303066294616}
{{0.805183981687842, 0.6904338445074102,
0. 06496089758613312, 0.232696648182826},
0. 3560041584495659} ,
{{0.09565111532630488, 0.1851818226345636,
0. 02887490038633783, 0.7375276132036344},
0. 2022854459014712}
{{0. 2439435829596022, 0.7688233506466804
0.7219297310912749, 0.6178877536977881},
0. 4404127034691717},
{{0.5888391073573663, 0.446266042574271
0. 988257684004084, 0.8735685412737289},
0. 655998843036941},
{{0. 5057645858975162
0. 8489160448215178
0. 3491010919018954},
{{0.9463473787851921
0. 2943479535206274,
0.567567207680777},
{{0. 1411633970973502,
0. 2293870559344944,
0. 4050148608067256} ,
{{0.04551228177104538, 0.6909679406331043,
0.2005121555481566, 0.008774449618088858},
0.1406221144458399},
{{0.8015686988114429, 0.9221445899864239
0. 4785824244568814, 0. 3908866959203006}
0. 5090052315365456} ,
{{0.2127295914540769, 0.4758785474121528
0.4903247404527972, 0.5173181546465722},
0. 2479389025490081} ,
{{0. 7069650055565609, 0.3826123658353584
0. 6414086956312789, 0.1647911933088755},
0. 3065488839475258} } ,
{{{o, o, o, o}, o}, {{1, 1, 1, 1}, 1.},
{{0.5236573143475254, 0.82631728719576
0.5847735478816752, 0.1475133296028847},
0. 3727274337170384},
{{0. 7542332254244829, 0.836248729294307,
0.4896071937147578, 0. 1408316021503213},
0. 4053384657889699} ,
{{0.7095328663615365, 0.5052520218728464
0. 03608599719979527, 0.4951690349791916},
0.1359211246632165},
{{0.8517075323667031, 0.4163584719878832
0. 3069451692950627, 0.1196398595058461},
0. 1434587636359673},
{{0. 655104475602236, 0.3225573080724096,

o

. 09326618157679439,
. 3525269613376964} ,

o

o

. 5665836077750778,
. 978998711004549},

o

o

. 8761497632676679,
. 7463020628217231},

o

0.7336720470871906, 0.7443192124240596},
0.1676126178724005},
{{0.08307452145984999, 0.3529998609974765
0.139341639182566, 0.5210415799360321},
0. 0583781104379917},
{{0.5594172071123244, 0.5266825738017164
0. 554568091300891, 0.3735282503331474},
0. 2483689393160614}
{{0.805183981687842, 0.6904338445074102,
0. 06496089758613312, 0.232696648182826},
0.2141158585399884}
{{0.09565111532630488, 0.1851818226345636,
0. 02887490038633783, 0.7375276132036344},
0. 01872320816661444},
{{0. 2439435829596022, 0.7688233506466804
0.7219297310912749, 0.6178877536977881},
0. 3684151965440207},
{{0.5888391073573663, 0.446266042574271
0. 988257684004084, 0.8735685412737289},
0.2773964834195918}
{{0.5057645858975162, 0.09326618157679439,
0.8489160448215178, 0.3525269613376964},
0. 02625848832773189}
{{0.9463473787851921, 0.5665836077750778
0.2943479535206274, 0.978998711004549},
0. 3376037129564266} ,
{{0.1411633970973502, 0.8761497632676679
0.2293870559344944, 0.7463020628217231},
0.2849292180661173},
{{0.04551228177104538, 0.6909679406331043,
0.2005121555481566, 0.008774449618088858},
0. 05660210117184252},
{{0.8015686988114429, 0.9221445899864239
0. 4785824244568814, 0.3908866959203006},
0.5747050028162732}
{{0.2127295914540769, 0.4758785474121528
0.4903247404527972, 0.5173181546465722},
0. 1626709366852991}
{{0. 7069650055565609, 0.3826123658353584
0. 6414086956312789, 0.1647911933088755},
0. 1544004229556137}}};

m PerformReliability Assessment Based on Data (r sq=1/6)

{Ex3Cal c[sysi,data[[1]],1/6, 3],
Ex3Cal c[sysi,data[[2]], 1/6, 3],
Ex3Cal c[sysi,data[[3]],1/6, 3]}

{0. 62418, 0.545021, 0.44416}

m Perform Reliability Assessment Based on Data (rsg=1/2)

{Ex3Cal c[sysi,data[[1]],1/2,3],
Ex3Cal c[sysi,data[[2]],1/2, 3],
Ex3Cal c[sysi,data[[3]],1/2,3]}

{0. 624284, 0.54382, 0.447619}

m Example 2 - MonotonicityAssured

Show { Graphics[{Line /@ ({{#, 0},{# 1}}& /@

Union[#[[1,1]]& / @test2])}],

G aphics[{Line /@ ({{0,#},{1,#}&/@
Union[#[[1,2]]& / @test2])}],

G aphi cs[{ Poi nt Si ze[0. 02],
{Point /@(#[[1]]1& /@test2)}}]},

Aspect Rati 0->1,

Pl ot Range->{{0, 1}, {0, 1} },

Fr ane- >Tr ue,

FranelLabel - >{ Subscri pt [x, 1], Subscript[x, 2]},

Rot at eLabel - >Fal se, Text Styl e- >{ Font Si ze- >16}

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1
X1

- Graphics -

test2ngnd2=Mul ti Quadri cND2[t est 2, 1/ 6] ;

Mul ti Quadri cNDRMBError [t est 2ngnd2, phi 2, 10]

0. 0228224

Show| Pl ot 30 M.i nl nt [{ x1, x2}, t est 2ngnd2],
{x1,0,1},{x2,0, 1},
Di spl ayFuncti on->l dentity],
Graphics3D[Point /@((Flatten / @test2)+
Tabl e[{0, 0,0. 02}, {Length[test2]}]),
Di spl ayFuncti on->ldentity],
Di spl ayFuncti on->$Di spl ayFuncti on,
AxeslLabel - >{ Subscript[x, 1],
Subscri pt[x, 2],
"s(x)"}]

- G aphi cs3D -

Analysis of Effect of R*2

m Calculations

data = {{{0}, 0}, {{1/2}, 03}, {{13, 1}};

Pl ot [Mul ti Quadric[{x}, data, Multi QuadricC[data, 0], O],
{x, 0, 1}, Pl otRange -> {0, 1},
AxeslLabel -> {Traditional Form[x], Traditional Forms[x]]}]

S (X)
1,
0.8}
0.6¢

0.4

0.2

0.2 0.4 0.6 0.8 1
- Graphics -

Pl ot [Mul ti Quadric[{x}, data, Multi Quadri cC[data, 1/1000],
1/,1000], {x, 0, 1}, Pl ot Range -> {-0.05, 1},
AxeslLabel -> {Traditional Form[x], Traditional Form[s[x]]}]

S (X)
1,
0.8
0.6¢

0.4¢

0.2¢

- G aphics -
Pl ot [Mul ti Quadric[{x}, data, Multi QuadricC[data, 1], 1],

{x, 0, 1}, Pl otRange -> {-0. 15, 1},
AxeslLabel -> {Traditi onal Form[x], Traditional For ms[x]]}]

S (X)
1,

0.8¢

0.6¢

0.4+

0.2¢

0.2 0.4 0.6 0.8 1

- Graphics -

IIE Paper Example 1

m Comments

In this notebook, functionsare givenin full rather than called through Rel Pack; it is hencecompletely
self-containedln fact, attemptingto eval uatethis notebook after Rel Pack has beenloaded will resultin
errors, asthiswill causedlightly different functionswith the same namesto be loaded over existing
"protected” ones. Thisnotebook containsthe exampl esin a paper which the author co-authoredand
has submittec ta || E Transactions

m Functions

O f [General ::spell]; Of [General ::spell1l];

m MultistateM arkov M odels

PDPEr | angi annM_| nteger, val |, t_1 : = Mdul e[{ans = Tabl e[0, {M+1}1},

(val t)yM™ gva t

(M=i)!

Do[ans[[i +1] = , {i, 1, l\/}]; ansfl] =1 -ians[[i +17;
anal -

PDPEr | angi anSystem[m] : =

Transpose[{Tabl e[it, {i, O, m}], PDPEr | angi anim, 2, t]}] // Simlify

PDPAdj acent[mynmu_List t_]:
Modul e[{m= Lengt h[nynu], nmu= Prepend nymy 0]},

Tahl arnt i ri 23 mi 1 ri n 111

pti[i _Integer, mlnteger, nu_List t_]:=

[Zaij[i, i, m my E‘"“[“*”“] n nmug +1]

i= a1

aij[i _Integer j_Integer, mlnteger, nmu_List]:=

m

Hlf[k=!=j’ m-rrI/.1111m.rri cam 1]

SYSF[sys_List, s_]:=Plusee (#1[2]&) /@ Sel ect[sys, #1[1] = s&]

SYSE2[sys_List] : =Plusee (#1 [11% #1[21&) /e sys

m MultistateM easures

SYSR[sys_List, s_] := 1-SYSF[sys, Ss]
SYSE[sys_List]:=Plusee (#1[1] #1[2]&) /@ sys
SYSV[sys_List]:=SYSE2[sys] - (SYSE[sys])?

SYSOE[sys_List, t_, =_, ni_: False, rules_: Null]:=
If [ni, NI ntegrate[SYSE[sys], {t, 0, t}]1,
I nt egrat e[SYSE[sys], {t, O, t}, rules]]

SYSOVUB[sys_List, t_, t_, ni_: False, rules_: Null]:=

2
I'f [ni, NIntegrate[VSYSE2[sys], {t, O, t}] -
NI nt egr at e[SYSE[sys], {t, 0, t}]2
2
Integrate[VSYSE2[sys], {t, O, t}, rules] -

I ntegrate[SYSE[sys], {t, O, t}, rules]?]

SYSD[sys_List, t_, s, ni_: False, rules_: Null]:=
If [ni, NI ntegrate[SYSR[sys, s], {t, 0, «}1,
I nt egrat e[SYSR[sys, s], {t, 0, =}, rules]]

SYSTCE[sys_List, t_, ni_: False, rules_: Null]:=
SYSOE([sys, t, o, ni, rules]

SYSLWE[sys_List, t_, U, ni_: False, rules_: Null]:=
If[ni, NIntegrate[U*SYSE[sys], {t, O, =}],
I ntegrate[UxSYSE[sys], {t, 0, =}, rules]]

m Example

(sys = PDPEr | angi anSyst em[3]) // Matri xForm

0 LE' (-2+2E'4-2t x-t222)
L Etap2 p2
2
Et4t X
E—tA

P w|n w;H

{#[11, SYSR[sys, #[111}& /@ sys // Sinplify // MatrixForm

0 FE' (2+2t a+t222)
EtX (1+t Q)
E—t)\
0

[w;m |

SYSE[sys] // Sinplify

%E“ (6+4t X+t22%)
SYSV[sys] // Sinmplify

,..].'.._ E72t A

36
(36 (-1+E'%) +16 (-3+E' M)t x+2 (-14+E'" M) t2x2-8t3 3 -t4 2%

Last [Fi ndM ni mum[- (SYSV[sys] /. A ->3), {t, 1}11]
{t - 0.599214 }

SYSCE[sys, t, r, Fal se, Assunptions- (z>0)] //Sinplify

12 “E2T (12 +6 AT+ A2 2)
P

SYSOVUB[sYS /. A= 3, t, 2, True]
0. 338449
{#[1], SYSD[sys, t, #[1], Fal se, Assunptions -» (Re[A] >0)]}& /e

Drop[sys, -11 //Sinmplify //
Mat ri xForm

w;m w|»—- o
RS LI

SYSTOE[sys, t, Fal se, Assunptions - (Re[A] >0)] //Sinplify
2

by

Ut _]:=E'vv

SYSLVE[sys, t, W [t], Fal se, Assunptions » (Re[A+v] >0)]

v (622 +82Av+3Vv?)
3 (A+v)®

Pl ot [SYSE[sys] /. A= 3, {t, 0, 2}, AxesLabel -> {"t", "E[¢(t)]1"}]

- Graphics -

Pl ot [SYSV[sys] /. A= 3, {t, 0, 2}, AxesLabel -> {"t", "V[¢(t)]1"}]

0.08¢
0.06 ¢
0.04 ¢

0.02¢

0.5 1 1.5 2
- Graphics -

Pl ot [SYSCE[sys, t, t, Fal se, Assunmptions- (z>0)] /. A~ 3,
{z, 0, 2}, AxeslLabel -> {"t", "CE[T]"}]

CE[t]

0.6
0.5¢
0.4
0.3

0.2

- Graphics -
Pl ot [Eval uat e[

SYSLVE[sys, t, U;[t], Fal se, Assunptions » (Re[A+v] >0)] /. A- 3],
{v, 0, 10}, AxesLabel -> {"v", "LVE[U[v]]" }]

LVWE[U[V]]

0.8¢

0.4

- Graphics -

IIE Paper Example 2

m Functions

O f [General ::spell]; Of [General ::spell1];
<< StatisticsContinuousDistributions’
S[cdfs_List]:=1-Tinesee (1 -cdfs)
Plcdfs_List]:=Ti mneseecdfs

AVG[e_List]: = (Pluseee) /Length[e]

AVRI[eb List]:=Mdule[{e, e2}, {e, e2} =Transpose[eb];
{(Pluseee) /Length[e], ((Pluseee2) +2Sum[e[[i]]lell[j]1].
{i, 1, Length[e] -1}, {j, i +1, Length[e]}]) /
Lengt h[e]”"2}]

PROD[e_Li st] : =Ti neseee

PROD2[eb_List]: =
Modul e[{e, €2}, {e, e2} =Transpose[eb]; {Ti nreseee, Ti mreseee?}]

COPROD[e_List]:=1-Tinesee (1 -e)

COPROD2[eb_List]:=Mdule[{e, e2}, {e, €2} = Transpose[eb];
{1-Tinesee(l-e), 1-2 (Tinesee (1 -e)) +Tinesee (1 -2e +e2)}]

Bi naryCDF[x_, p_] := Wiich[

x <0, O,
X>=1, 1,
True, 1-p

]

Mul tistateCDF[x_, sys_] := Wich]
x < First[sys]1[[1]], O,
X >=Last [sys][[1]1], 1,
X >=First [sys]1[[1]] && x < Last [sys][[1]]1,
Dof[lf [sys[[i, 111 <=x<sys[[i +1, 111,
Return[Sum[sys[[j, 211, {j. i }]]]
, {i, Length[sys] -1}]1]

Il[t , k] :=E—Log[2]t/k

t_, k_]: L2 Ab ! t, k

ot _]'_I(?_ slz -wtt]]]+1oo
Fre_, k_, x_1:= Wichp

x<0, O,

Xx>=1, 1,

True, (CDF[Normal Distribution[u[t, k], o[t, k11, X] -
CDF[Normal Di stribution[u[t, k], o[t, k11, 01)/
(CDF[Normal Di stribution[uf[t, k], o[t, kI]], 11 -
CDF[Nornmal Di stribution[u[t, k], o[t, k]1, 01)]

m Continuum Measures (CDF)

Note: for repairablesystems CDFR would moreproperly be called CDFA. Noteasothattisthe
first argumentin these expressionsrather than the second.

CDFMonent [t _, n_, a_: 2] : =
NI ntegrate[nx"? (1 - CDFF[t, x1), {x, 0, 1}, AccuracyGoal - a]

CDFR[t_, x_]:=1-CDFF[t, X]
CDFE[t_, a_: 2] : = CDFMonent [t, 1, a]
CDFV[t _, a_: 2] :=CDFMonent [t, 2, a] - COFMonent [t, 1, a]?

CDFCE[tau_, a_: 2] :=
NI nt egr at e[CDFE[t, a], {t, O, tau}, AccuracyGoal - a]

CDFOVUB[tau_, a_: 2] : =

2
NI nt egr at e[V CDFMonent [t, 2, a], {t, O, tau}, AccuracyGoal »a] -
CDFCE[t au, a]?

CDFD[x_, a_: 2] : =N ntegrate[CDFR[t, x], {t, 0, o}, AccuracyGoal - a]
CDFTCE[a_: 2] : = CDFCE[, a]

CDFLVE[uU_, a_: 2] : =
NI nt egrat e[u CDFE[t, a], {t, O, o}, AccuracyGoal - a]

CDFAV[tau_, s_: 0, a_: 2] :=
NI nt egr at e[CDFR[t, s], {t, O, tau}, AccuracyGoal »a]/tau

Bla_: 0.05, s_: 0, a_: 2] : = Fi ndRoot [CDFR[b, S] =1 -a, {b, 0, 0.01}]
CDFOES[tau_, a_: 2] :=CDFCE[tau, a] /tau

CDFCCT[tau_, a_: 0.05, a_: 2]:=
{CDFCE[t au, a] +Sqrt [CDFOVUB[tau, a] /a],
CDFCE[t au, a] - Sqrt [CDFOVUB[t au, a] / a]}

CDFDV[Xx_, a_: 2]: =
NI ntegrate[2t CDFR[t, x], {t, O, o}, AccuracyGoal -»a] -
NI nt egr at e[CDFR[t, x], {t, 0, o}, AccuracyGoal »a]?

CDFT[a_: 0.95, a_: 2]:=
Fi ndRoot [CDFCE[T, a] == a COFTCE[a], {T, 0, 0.01}]

m Example A System

c = {Mil tistateCDF[x, {{O, %E‘“ (-2+2E% -6t -9t?)},

1 2
{g’ %E‘3tt2}, {g’ 3E—3tt}l {l, E_Bt}}],
Bi nar yCDF[x, E3'/2], F[t, 2/3, x], F[t, 1, x], F[t, 1/2, x1,
FIt, 3/4, x1};

CDFF[t0_, X0_]: =

Pl{c[[2]1], S[{c[[11]1, P[{c[[31], c[[41], c[[5]11, c[[611}1}1}1 /.
{t -t0, x>x0} //
N

m Example A Calculations

Pl ot [CDFF[1, s], {s, -0.1, 1.1}, AxeslLabel -> {"s", "F[s, 1]"}]

F[s, 1]
1t -

0.8

0.6

0.4

0.2}

0.2 0.4 0.6 0.8 1
- Graphics -

Pl ot [CDFR[1, s], {s, -0.1, 1.1}, AxesLabel -> {"s", "A[s, 1]1"}]

Als, 1]
1,

0.6
0.4

0.2

0.2 0.4 0.6 0.8 1
- Graphics -

Pl ot [CDFE[t, 4], {t, O, 3}, AxesLabel -> {"t", "E[¢(t)]1"}]

0.5 1 1.5 2 2.5 3

- Graphics -

Pl ot [CDFV[t, 4], {t, 0, 3}, AxesLabel -> {"t", "V[¢(t)]"}]
Vio(t)]
0.15;

0.125;

0.075¢
0.05¢

0.025;

0.5 1 1.5 2 2.5 3
- Graphics -
CDFE[3, 4]
0.0119001
CDFV[3, 4]
0.0110788
CDFCE[3, 4]
0.918261
CDFOVUB[3, 4]
0. 874275
CDFDI[0, 4]

1. 19753
CDFTOE[4]
0.925911
B[0.05, 0, 4]
{b - 0.388612 }

CDFAV[1/10, 0O, 4]

0. 999895

CDFCES[3, 4]

0. 306087

CDFOCT[3, 0. 05, 4]

(5.09983, -3.26331}

CDFDV[O0, 4]

0. 426002

CDFT[0. 95, 4]

{T > 1.89013}

m Example B System and Calculations

ele2b[tau_: 1] : =

{{Pl usee (#1[1] #1[21&) /e ({{o, %E‘“ (-2+2B% -6t -9t?)},

1 9 2
— _E3tt2 _ -3t -3t _
{3, 5 E t2}, {3,3E t} {1, E®}/ot >tau)//
N,

Plusee (#1[1]" 2 #1[2]&) /e ({{0, %E"“ (-2+2B"' -6t -9t%)},

1 9 2
— _E3tt2 _ -3t -3t _
{3, 5 E t},{3,3E t} {1, E®}/ot >tau)//

N},

{Pl usee

(#1[1] #1[21&) /@ ({{0, 1 -E3'/2} (1, E3'23} /.t ->tau) // N,
Plusee (#1[11" 2 #1[2]&) /@

({{0, 1-E=3'2}, (1, E3'/233 /.t ->tau) // N},
{NIntegrate[(1- (c[[3]] /.t ->tau)), {x, 0, 1}],
Nl ntegrate[2x (1 - (c[[3]] /.t ->tau)), {x, 0, 1}1},
{NIntegrate[(1- (c[[4]] /.t ->tau)), {x, 0, 1}],
Nintegrate[2Xx (1 - (c[[4]] /. t ->tau)), {x, 0, 1}1},
{NIntegrate[(1- (c[[5]] /.t ->tau)), {x, 0, 1}],
Nintegrate[2Xx (1 - (c[[5]] /. t ->tau)), {x, 0, 131},
{NIntegrate[(1- (c[[6]] /. t ->tau)), {x, 0, 1}],
Nl ntegrate[2x (1 - (c[[6]1] /. t ->tau)), {x, O, 1}]}}

eb =ele2b[1]

{{0.224042, 0.141063 }, {0.22313, 0.22313}, {0.353615, 0.134702 },
{0.5, 0.268168 }, {0.250076, 0.0677752 }, {0.396909, 0.169441 }}

eb2 = COPROD2[

{PROD2[{AV&2[{eb[[1]], eb[[2]], eb[[3]11}], eb[[4]], eb[[5]]}],
eb[[6]1}]

{0. 417038, 0.185319}

{e, v} ={eb2[[1]], eb2[[2]] -eb2[[1]]"2}
{0.417038, 0.0113983 }

Miscellaneous Examples

m Tire Example

(tire=Transposg{{0, 1, 2}, PDPAdj acent[{u;, m}, t1}1 //Sinmplify //
Mat ri xForm

(1-E'#2) py+ (A+E ML) 1

M1 -2
(E-tr gt) Lo
—H1+H2

—_t

1

K

Expect edSt at ¢tire]
(Bt —E')

2B R 4

tire/. {up »1, up »2} // Matri xForm

(0 -1+E?' -2 (-1+E")
1 2 (-E?t +EY)

|

|2 E2!

ExpectedStatgtire] /. {us »1, up -2} //Sinplify

2E!

m Continuous Bounds Example

NI ntegratg Ml ti Quadri ¢ {x1, x2}, {{{0, 0}, 0}, {{0, 1/2}, 1/2},
{{1/2, 0}, 1/2}, {{1/2, 1/2}, 3/4}, {{1, 1}, 1}}, Evaluatq
Mil ti Quadri c@{{{0, 0}, O}, {{O, 1/2}, 1/2}, {{1/2, 0}, 1/2},
{{1/2, 1/2}, 374}, {{1, 13}, 133}, 1/6]1, 1/6]11, {x1, O, 13,

0. 71351

Bounds2[{{{0, O}, 0}, {{O0, 1/2}, 1/2},
{{1/2, 0}, 1/2}, {{1/2, 1/2}, 3/4}, {{1, 1}, 1}},

r1 111

{0. 4375, 0.9375}

m U(t) lllustrations

Pl ot [PDF[Uni f or nDi stri bution[0, 2], t], {t, O, 3},
Pl ot Range -> {0, 1}, AxesLabel -> {"t", "U(t)"}]

U(t)
1,
0.8}

0.6¢

0.4¢

0.2¢

0.5 1 1.5 2 2.5 3
- Graphics -

Pl ot [PDF[Exponential Di stribution[1], t], {t, 0, 3},
AxesLabel -> {"t", "U(t)"}1]

U(t)
1

0.8
0.6
0.4

0.2

0.5 1 1.5 2 2.5 3
- Graphics -

Pl ot [PDF[Rayl ei ghDi stri bution[1], t], {t, 0, 3},
AxesLabel -> {"t", "U(t)"}]

0.5 1 1.5 2 2.5

- Graphics -

Appendix J

SOFTWARE FUNCTION CODE

These are the functions which comprise the set of original Mathematica packages
that were documented in Appendix I. If the disk accompanying this dissertation is
available, these functions may be called from it. If not, then by entering all of them
and calling any standard Mathematica packages mentioned at the beginning of each

section, the functionality utilized in Appendix I will be duplicated.
J.1 ContinuousOptimization

The functions in this section require that the Measures, Distributions, and

Statistics‘ContinuousDistributions packages also be loaded.

MonteCarlo2[cdflist_List,x_,phi_,d_:0.1,min_:0,max_:1] :=
Module[{n,data, inp},
1=0.9604/d"2; (* p +- d is 95% CI *)
inp=Table [CDFRandom[cdflist[[i]],x,n,min,max],
{i,1,Length[cdflist]}];
data=phi[#]& /@ Transpose[inp];
MultistateCDF [x,FnEstimate[data]]

ContDisc[cdflist_List,x_,phi_,n_:5,min_:0,max_:1] :=
Module [{p, fphi, pprob},

p=Table[min + (i-1)/(n-1) (max-min),
{Length[cdflist]},{i,n}];

fphi=p[[1]];

pprob=Table[If[j==1,cdflist[[i]] /. x->p[[i,jl],
(cdflist[[1]1] /. x->pl[[i,j11) -
(cdflist[[i1] /. x->p[[i,j-111)1,

{i,Length[cdflist]},{j,n}];

Transpose [{fphi,

SystemFromDirectEnumeration2[p,phi,fphi,pprobl}]]

454

SystemFromDirectEnumeration2[p_List,phi_Symbol,
fphi_List,pprob_List] :=
Module[{ans = Table[0, {Length[fphill}], tab2, templ},
tab2 = systable3[p, phi, fphil;
Do [temp=Transpose [Select[tab2,
#[[2]]==fphi[[i]] &]]1[[11];
Do[Do[temp[[j,k]] =
pprob[[k,Position[p[[k]],
temp[[j,k111[[1,111]1]
,{k,Length[p]l}]
,{j,Length[temp]l}];
ans[[i]] = Plus @@ Apply[Times, temp, 1]
,{i,Length[fphil}];
ans

]

systable3[p_List,phi_Symbol,fphi_List] :=
{#, phirnd[#,phi,fphi]}& /@ perm3[p]

phirnd[x_,phi_,fphi_] := Module[{temp,i=1},
temp=phi [x];
While[temp>fphi[[i]] && i<Length[fphi],i++];
fphi[[i]]]

perm3[p_List] := Module[{tab,size,m,n,a,i,j},

n=Length [p];

m=Table[Length[p[[i]]],{i,n}];

size=Product[m[[i]],{i,n}];

tab=Table[0,{sizel}];

a=Table[1,{i,n}];

Do[tab[[jl]=Tablel[pl[[i,alli1]11],{i,n}];
Do[If[Take[a,-(n-i)]==Take[m,-(n-1)],

Iflalli])==m[[i]],al[i]l]=1,a[[i1]++]],
{i,n-1}]1;

If(al[n]]==m[[n]],al[n]l]=1,aln]]++];

,1j,sizel}];

tab]

PDFADist[pdf_,x_,a_List] :=
Sqrt [Sum[NIntegrate[(x-(al[[i+1]1]1+al[i]11)/2)"2 pdf,
{x,allil],alli+1]113}], {i, 2, Length[a]-2}]+

455

NIntegrate[(x-First[a]) "2 pdf,
{x,al[1]1]1,al[2]11}]+

NIntegrate[(x-Last[al)"2 pdf,
{x,al[-2]],al[-1]112}]1]

RD[pdf_,x_,n_,min_:0,max_:1] :=

Switch[n,2,RD02[pdf,x,min,max],
3,RD03[pdf,x,min,max],
4,RD04 [pdf,x,min,max],
5,RD0O5 [pdf,x,min,max],
6,RDO6 [pdf,x,min,max],
7,RDO7 [pdf,x,min,max],
8,RD08[pdf,x,min,max],
9,RD09 [pdf,x,min,max],
10,RD10[pdf,x,min,max],
_,False]

RDO2[pdf_,x_,min_:0,max_:1] := Module[{x1,ans},
ans=FindMinimum [PDFADist [pdf,x,{min,x1,max}] "2,
{x1,{min+1/2*(max-min) ,min+1/2* (max-min)+10*$MachineEpsilon}},
MaxIterations->30000] ;
ans[[2]]={min,x1,max} /. ans[[2]];
ans[[1]1]=Sqrt[ans[[1]]];
ans]

RDO3[pdf_,x_,min_:0,max_:1] := Module[{x1,x2,ans},

ans=FindMinimum[PDFADist [pdf,x,{min,x1,x2,max}] "2,
{x1,{min+1/3*(max-min) ,min+1/3* (max-min)+10*$MachineEpsilon}},
{x2,{min+2/3* (max-min) ,min+2/3* (max-min)+10*$MachineEpsilon}},
MaxIterations—>30000] ;

ans[[2]]1={min,x1,x2,max} /. ans[[2]];

ans[[1]1]1=Sqrt[ans[[1]]];

ans]

RDO4 [pdf_,x_,min_:0,max_:1] := Module[{x1,x2,x3,ans},

ans=FindMinimum [PDFADist [pdf,x,{min,x1,x2,x3,max}] "2,
{x1,{min+1/4* (max-min) ,min+1/4* (max-min)+10*$MachineEpsilon}},
{x2,{min+2/4* (max-min) ,min+2/4* (max-min)+10*$MachineEpsilon}},
{x3,{min+3/4* (max-min) ,min+3/4* (max-min)+10*$MachineEpsilon}},
MaxIterations—>30000] ;

ans[[2]]={min,x1,x2,x3,max} /. ans[[2]];

ans[[1]1]=Sqrt[ans[[1]]];

ans]

456

RDO5[pdf_,x_,min_:0,max_:1] := Module[{x1,x2,x3,x4,ans},

ans=FindMinimum [PDFADist [pdf,x,{min,x1,x2,x3,x4,max}] "2,
{x1,{min+1/5*% (max-min) ,min+1/5*% (max-min)+10*$MachineEpsilon}},
{x2,{min+2/5*% (max-min) ,min+2/5* (max-min)+10*$MachineEpsilon}},
{x3,{min+3/5*% (max-min) ,min+3/5*% (max-min)+10*$MachineEpsilon}},
{x4,{min+4/5*% (max-min) ,min+4/5*% (max-min)+10*$MachineEpsilon}},
MaxIterations—>30000] ;

ans[[2]]={min,x1,x2,x3,x4,max} /. ans[[2]];

ans[[1]]=Sqrt[ans[[1]]];

ans]

RDO6[pdf_,x_,min_:0,max_:1] := Module[{x1,x2,x3,x4,x5,ans},

ans=FindMinimum [PDFADist [pdf,x,{min,x1,x2,x3,x4,x5,max}] "2,
{x1,{min+1/6* (max-min) ,min+1/6* (max-min)+10*$MachineEpsilon}},
{x2,{min+2/6* (max-min) ,min+2/6* (max-min)+10*$MachineEpsilon}},
{x3,{min+3/6* (max-min) ,min+3/6* (max-min)+10*$MachineEpsilon}},
{x4,{min+4/6* (max-min) ,min+4/6* (max-min)+10*$MachineEpsilon}},
{x5,{min+5/6* (max-min) ,min+5/6* (max-min)+10*$MachineEpsilon}},
MaxIterations—>30000] ;

ans[[2]]={min,x1,x2,x3,x4,x5,max} /. ans[[2]];

ans[[1]]1=Sqrt[ans[[1]1];

ans]

RDO7 [pdf_,x_,min_:0,max_:1] := Module[{x1,x2,x3,x4,x5,x6,ans},

ans=FindMinimum [PDFADist [pdf,x,{min,x1,x2,x3,x4,x5,x6,max}] "2,
{x1,{min+1/7* (max-min) ,min+1/7* (max-min)+10*$MachineEpsilon}},
{x2,{min+2/7* (max-min) ,min+2/7* (max-min)+10*$MachineEpsilon}},
{x3,{min+3/7* (max-min) ,min+3/7* (max-min)+10*$MachineEpsilon}},
{x4,{min+4/7* (max-min) ,min+4/7* (max-min)+10*$MachineEpsilon}},
{x5,{min+5/7* (max-min) ,min+5/7* (max-min)+10*$MachineEpsilon}},
{x6,{min+6/7* (max-min) ,min+6/7* (max-min)+10*$MachineEpsilon}},
MaxIterations—>30000];

ans[[2]]={min,x1,x2,x3,x4,x5,x6,max} /. ans[[2]];

ans[[1]]1=Sqrt[ans[[1]11];

ans]

RDO8[pdf_,x_,min_:0,max_:1] := Module[{x1,x2,x3,x4,x5,x6,x7,ans},
ans=FindMinimum [PDFADist [pdf,x,{min,x1,x2,x3,x4,x5,x6,x7,max}] "2,
{x1,{min+1/8* (max-min) ,min+1/8* (max-min)+10*$MachineEpsilon}},
{x2,{min+2/8* (max-min) ,min+2/8* (max-min)+10*$MachineEpsilon}},
{x3,{min+3/8* (max-min) ,min+3/8* (max-min)+10*$MachineEpsilon}},
{x4,{min+4/8* (max-min) ,min+4/8* (max-min)+10*$MachineEpsilon}},

457

{x5,{min+5/8* (max-min) ,min+5/8* (max-min)+10*$MachineEpsilon}},
{x6,{min+6/8* (max-min) ,min+6/8* (max-min)+10*$MachineEpsilon}},
{x7,{min+7/8* (max-min) ,min+7/8* (max-min)+10*$MachineEpsilon}},
MaxIterations—>30000] ;

ans[[2]]1={min,x1,x2,x3,%x4,x5,x6,x7,max} /. ans[[2]];

ans[[1]1]=Sqrt[ans[[1]11];

ans]

RDO9[pdf_,x_,min_:0,max_:1] := Module[{x1,x2,x3,x4,x5,x6,x7,x8,ans},

ans=FindMinimum[PDFADist [pdf,x,{min,x1,x2,x3,%x4,x5,%x6,x7,x8,max}] "2,
{x1,{min+1/9* (max-min) ,min+1/9* (max-min)+10*$MachineEpsilon}},
{x2,{min+2/9* (max-min) ,min+2/9* (max-min)+10*$MachineEpsilon}},
{x3,{min+3/9* (max-min) ,min+3/9* (max-min) +10*$MachineEpsilon}},
{x4,{min+4/9* (max-min) ,min+4/9* (max-min)+10*$MachineEpsilon}},
{x5,{min+5/9* (max-min) ,min+5/9* (max-min) +10*$MachineEpsilon}},
{x6,{min+6/9* (max-min) ,min+6/9* (max-min)+10*$MachineEpsilon}},
{x7,{min+7/9* (max-min) ,min+7/9* (max-min) +10*$MachineEpsilon}},
{x8,{min+8/9* (max-min) ,min+8/9* (max-min)+10*$MachineEpsilon}},
MaxIterations—>30000] ;

ans[[2]]={min,x1,x2,x3,%x4,x5,x6,x7,x8,max} /. ans[[2]];

ans[[1]1]=Sqrt[ans[[1]11];

ans]

RD10[pdf_,x_,min_:0,max_:1] := Module[{x1,x2,x3,x4,x5,x6,x7,x8,x9,ans},

ans=FindMinimum[PDFADist [pdf,x,{min,x1,x2,x3,%x4,x5,%x6,x7,%x8,x9,max}] "2,
{x1,{min+1/10* (max-min) ,min+1/10* (max-min)+10*$MachineEpsilon}},
{x2,{min+2/10% (max-min) ,min+2/10* (max-min)+10*$MachineEpsilon}},
{x3,{min+3/10* (max-min) ,min+3/10* (max-min)+10*$MachineEpsilon}},
{x4,{min+4/10% (max-min) ,min+4/10* (max-min)+10*$MachineEpsilon}},
{x5,{min+5/10* (max-min) ,min+5/10% (max-min)+10*$MachineEpsilon}},
{x6,{min+6/10* (max-min) ,min+6/10* (max-min)+10*$MachineEpsilon}},
{x7,{min+7/10* (max-min) ,min+7/10% (max-min)+10*$MachineEpsilon}},
{x8,{min+8/10* (max-min) ,min+8/10* (max-min)+10*$MachineEpsilon}},
{x9,{min+9/10* (max-min) ,min+9/10%* (max-min)+10*$MachineEpsilon}},
MaxIterations—>30000] ;

ans[[2]]={min,x1,x2,x3,x4,x5,x6,x7,x8,x9,max} /. ans[[2]];

ans[[1]1]=Sqrt[ans[[1]1];

ans]

GenAns[pdf_,x_,a_] := Module[{n, ans},
n=Length[a];
ans=Table[{(al[i]]+a[[i+1]])/2,

458

NIntegrate[pdf,{x,al[i]],al[i+1]11}]1},{i,n-1}];
ans[[1,1]]=al[1]]; ans[[n-1,1]]=al[n]l];
ans]

TruncatedPDF [x_,mmadist_,min_:0,max_:1] :=
PDF [mmadist,x]/ (CDF [mmadist,max]-CDF [mmadist,min])

CohInputQ[data_List] := Module[{n,ans=True},
n=Length[datal;
Do[Do[If[(LessOrEqualQ[datal[j,1]],datal[i,1]1]1] &&

datal[j,2]1>datal[i,2]1]1) ||
(GreaterOrEqualQ[datal[j,1]],datal[i,1]]] &&
datal[j,2]1<datal[i,2]11),

ans=False; Print[j,", ",il]
,{i,j+1,n}]
,{j,n-1}1;
ans]

ExtremaAdd[data_List] := Module[{n,ans},

ans=data;

n=Length[datal[1,1]]];

If [FreeQ[Transpose[data] [[1]],Table[1,{n}]1],
ans=Prepend [ans,{Table[1,{n}],1}]1];

If [FreeQ[Transpose[data] [[1]],Table[0,{n}]],
ans=Prepend [ans,{Table[0,{n}],0}]];

ans]

Shepard[x_List,data_List] := Module[{n,d},
n=Length[datal; d=Tablel[1l,{n}];
Do[d[[i]]=Chop[Plus @@ ((x-datal[[i,1]11)°2)]1,{i,n}];
If[FreeQ[d,0],
Sum([datal[i,2]]1/d[[1]1],{i,n}]/
Sum[1/d[[1]1],{i,n}],
data[[Position[d,0] [[1,1]1],2]11]1]

MultiQuadric[x_List, data_List, c_List, rsq_:(1/6),
prec_:$MachinePrecision] :=
N[c . Sqrt[Plus @@ Transpose[(Tablel[x,{Length[datall}]-
Transpose[data] [[1]])"2] + rsql,prec]

MultiQuadricC[data_List,rsq_:(1/6),prec_:$MachinePrecision] :

LinearSolve[N[Table[Sqrt[Plus @@ ((datal[i,1]]1-
datal[j,1]11)72) + rsql
,1i,Length[datal},{j,Length[datal}],prec],
N[Transpose[data] [[2]],prec]]

ShepardND [data_,m_:5] :=
Module[{obt,grid,n,temp,low,high,ans,al, a0},
n=Length[datal[[1,1]]]; obt=ExtremaAdd[data];
grid=GridGenerate[m,n];
grid=Transpose [Sort [Transpose[{grid,Apply[Plus,
((grid-1/2)"2),2]1}] ,0rderedQ[{#1[[2]],
#2[[211}31&110[11]1;
ans=Table[1/2,{Length[grid]l}];
al=Transpose[Select [ExtremaAdd[datal,
Chop [(1-#[[2]]1)]==0&]1[[1]];
a0=Transpose[Select [ExtremaAdd[datal,
Chop[#[[2]1]1==0&]]1 [[1]1];
If[Lengthl[al]l>1 || Length[a0]>1,
Do[Do[If[LessQlgrid[[il],a0[[j1]1],
If [FreeQ[Transpose[obt] [[1]],grid[[i]]],
obt=Prepend [obt,{grid[[1]],0}]11]
,{j,Length[a0]}];
Do [If [GreaterQ[grid[[il],a1[[j1]1],
If [FreeQ[Transpose[obt] [[1]],grid[[i]]],
obt=Prepend [obt,{grid[[1]],1}]1]1]
,{j,Length[al]}];
,{i,Length[grid]l}]];
Do[If[FreeQ[Transposel[obt] [[1]],grid[[i]1]],
low=0; high=1;
temp=Shepard[grid[[i]],obt];
Do[If[LessQlobt[[j,1]1],grid[[i]]],
low=Max[low,obt[[j,2]1]171;
I1f [GreaterQ[obt[[j,1]],grid[[i]11],
high=Min[high,obt[[j,2]111];

,{j,Length[obt]}];

If[temp<low,temp=low]; If[temp>high,temp=high];
obt=Prepend [obt,{grid[[i]], templ}];
ans[[i]]=temp,ans[[i]]=Select[obt,

#[[1]])==grid[[i]]&] [[1,2]]1]
,{i,Length[grid]}];
Transpose[{grid,ans}]]

459

460

MultiQuadricND[data_,m_:5,rsq_: (1/6),prec_:$MachinePrecision] :

Module[{obt,grid,n,temp, tempc,low,high,ans,al,al},
n=Length[datal[[1,1]]]; obt=ExtremaAdd[data];
grid=GridGenerate[m,n];
grid=Transpose [Sort [Transpose[{grid, Apply [Plus,

((grid-1/2)"2),2]1}] ,0rderedQ[{#1[[2]],

#2[[2]11}1&110[117;
ans=Table[1/2,{Length[grid]l}];
al=Transpose[Select [ExtremaAdd[data],

Chop[(1-#[[2]11)1==0&]11[[11];
a0=Transpose[Select [ExtremaAdd[data],

Chop [#[[2]11]1==0&]11[[11];
If[Lengthlal]l>1 || Length[a0]>1,

Do[Do[If[LessQ[grid[[il],a0[[j1]1],
If [FreeQ[Transpose[obt] [[1]],grid[[i]1]1],
obt=Prepend [obt,{grid[[i]],0}]1]]
,{j,Length[a0]}];
Do[If[GreaterQ[grid[[il],a1[[j11],
If [FreeQ[Transpose[obt] [[1]],grid[[i]1]],
obt=Prepend [obt,{grid[[i]],1}]1]]

,{j,Length[al]}];

,{i,Length[grid]1}1];
Do[If[FreeQ[Transposel[obt] [[1]1],grid[[i]1]],

low=0; high=1;

tempc=MultiQuadricC[obt,rsq,prec];
temp=MultiQuadric[grid[[i]],obt,tempc,rsq,prec];

Do[If[LessQlobt[[j,1]1],grid[[i]]],

low=Max [low,obt[[j,2]11]1];
If[GreaterQ[obt[[j,11]1,grid[[i]1]],
high=Min[high,obt[[j,2]111];

,{j,Length[obt]}];

If [temp<low,temp=low]; If[temp>high,temp=high];
obt=Prepend[obt,{grid[[i]],temp}];
ans[[i]]=temp,ans[[i]]=Select [obt,

#[[1]]==grid[[i]]&] [[1,2]]]
,{1i,Lengthlgridl}];
Transpose[{grid,ans}]]

MLinInt[x_,data_] := Module[{n,xdata,ans,ans2,ans3},
n=Length[x];
xdata=Union /@ Transpose[Transposeldatal [[1]]];
ans=ans3=Table[1,{n}];
ans2=Apply[List,Flatten[Array[Unique(],
Table[2,{n}],011,2];

461

Do[While[Not[xdatal[[i,ans[[1]]]]<=x[[i]]<=
xdatal[[i,ans[[1]]+1]1]],
++ans[[1]]1],{i,n}];
Dolans3[[i]l]l=(x[[i]]-xdatal[i,ans[[i1111)/
(xdatal[i,ans[[i]]+1]]-xdatal[[i,ans[[i1]11]),{i,n}];
Sum[Select[data,#[[1]]==MapThread[Part,
{xdata,ans+ans2[[jI1]1}]1&] [[1,2]]%*
Product[1-ans2[[j,i]]1+(-1)"(1-ans2[[j,1i]1])*
ans3[[1]],{i,n}],{j,2"n}]]

GriddedRMSError[data_,phi_] :=
Sqrt [Sum[(phi[datal[i,1]]1]-datal[[i,2]])"2
,{i,Length[datal}]/Length[data]l]

ShepardRMSError [data_,phi_,m_:10] := Module[{real2,n},
n=Length[datal[1,1]]];
real2=PhiGrid[phi,m,n];
Sqrt[Sum[(real2[[i,2]]-Shepard[real2[[i,1]],datal) "2
,{i,Length[real2]}]/Length[real2]]]

MultiQuadricRMSError [data_,phi_,m_:10,rsq_: (1/6),
prec_:$MachinePrecision] :=

Module[{real,c,n},
n=Length[datal[1,1]]];
real=PhiGrid[phi,m,n];
c=MultiQuadricC[data,rsq,prec];
Sqrt[Sum[(real [[i,2]]-MultiQuadric[reall[[i,1]],

data,c,rsq,prec]l) 2

,{i,Length[reall}]/Length[reall]]]

PhiGrid[phi_,m_:4,n_:2] :=
{#, phi[#]}& /@ GridGenerate[m,n]

RandomPhi [phi_,m_:4,n_:2] :=
{#, phi[#]}& /@ RandomGenerate[m,n]

RandomGenerate[m_:4,n_:2] := Table[Random[],{m},{n}]

462

ShepardGrid[data_,m_:4] := Module[{grid,n,obt},
n=Length[datal[1,1]1]];
obt=ExtremaAdd[datal;
grid=GridGenerate[m,n];
Dol[grid[[i]]={grid[[i]],Shepard[grid[[i]l],obt]}
,{i,Length[grid]}];
grid]

GridGenerate[m_:4,n_:2] :=
Apply[List,Flatten[Array[Uniquel[],
Table[m,{n}],0]],2]/(m-1)

J.2 DeterministicAnalysis

LessOrEqualQ[a_List,b_List] := FreeQ[Inner[LessEqual,a,b,List],False]

LessQ[a_List,b_List] := FreeQ[Inner[LessEqual,a,b,List],
False] && MemberQ[Inner[Less,a,b,List],True]

GreaterOrEqualQ[a_List,b_List] := FreeQ[Inner[GreaterEqual,a,b,List],
False]
GreaterQ[a_List,b_List] := FreeQ[Inner[GreaterEqual,a,b,List],

False] && MemberQ[Inner[Greater,a,b,List],Truel

VectorSpace[p_List] := Module[{tab,size,m,n,a,i,j},

n=Length[p];

m=Table[Length[p[[i]]],{i,n}];

size=Product[m[[i]],{i,n}];

tab=Table[0,{sizel}];

a=Table[1,{i,n}];

Do[tab[[jl]=Tablelp[[i,allil]]1],{i,n}];
Do[If[Take[a,-(n-i)]==Take[m,-(n-1)],

Iff(al[i]]==m[[i]],al[i]l]=1,al[i]]++]],{i,n-1}];

Iffal[nl]==m[[n]l],allnl]=1,aln]]++];

,{j,sizel}];

tab]

NonDecreasingQ[p_List,phi_Symbol] := Module[{size,m,n,a,b,0ld,i,],

iter,ans},
n=Length [p] ;

m=Table[Length[p[[i]]],{i,n}];

size=Product[m[[i]],{i,n}];

a=Table[1,{i,n}];

b=Table[0,{i,n}];

iter=1;

ans=True;

While[iter<=size && ans,
Do[b[[i]l1=p[[i,al[i111],{i,n}];
old=phil[b];

Do [

Iflal[il]l<m([[i]],
If [phi[ReplacePart[b,p[[i,al[i]]+1]],i]]<old,
ans=False]]
,{i,n}];
Do[If[Take[a,-(n-i)]==Take[m,-(n-i)],
If(al(i]l]==m([[i]1],al[i]l]1=1,al[i]1]++]1],{i,n-13}];

Iffal[n]]==m[[nl],alln]l]l=1,al[n]]++];

iter++];

ans]

ProperLimitsQ[p_List,phi_Symbol,pphi_List] :=
If [phi[Map[Last,p]l]l==Last[pphil &&
phi [Map[First,pl]==First[pphil,True,False]

ReleventComponentsQ[p_List,phi_Symbol] := Module[{vrel,n,size,a,b,m,i,

iter,ans},

n=Length [p];

m=Table[Length[p[[i]]],{i,n}];

size=Product[m[[i]],{i,n}];

vrel=Table[False,{i,n}];

a=Table[1,{i,n}];

b=Table[0,{i,n}];

iter=1;

While[iter<=size && Not[FreeQ[vrel,False]ll,
Do[b[[il]=pl[[i,al[i111]1,{i,n}];
Do[If[vrel[[i]l]==False && phil[ReplacePart[b,

plli,m[[i]11]1],11]1>
phi[ReplacePart[b,pl[i,1]1],i]1],vrel[[i]1]=Truel,
{i,n}];
Do[If[Take[a,-(n-i)]==Take[m,-(n-1)],

463

464

If(al[il]==m[[i]1],al[i]1]1=1,al[i]]++]1],{i,n-13}];
If(al[n]]==m[[n]],al[n]]=1,al[n]]++];
iter++];
If[FreeQ[vrel,False],ans=True,ans=False];
ans]

CoherentQ[p_List,phi_Symbol,pphi_List:{0,1}] :=
FreeQ[{NonDecreasingQ[p,phi] ,ProperLimitsQ[p,phi,pphil,
ReleventComponentsQ[p,phil},
Falsel

LBPFromStructure[p_List,phi_Symbol,fphi_List] :=
Module[{n,m,size,i,a,b,mm,cl,c2,0ld,iter,ans,locans},
n=Length[p];
m=Table[Length[p[[i]]],{i,n}];
size=Product[m[[i]],{i,n}];
a=Table[1,{i,n}];
b=Table[0,{i,n}];
locans=Table[0,{i,n}];
iter=1;
mm=First [fphi] ;
ans={};
While[iter<=size,
Do[b[[il]=p[[i,all[1111],{i,n}];
old=phi[b];
Do[If[al[il]>1,
locans[[i]]=phi[ReplacePart[b,
plli,alli11-11],11],
locans[[i]]=mm]
,{i,n}];
c2=Position[fphi,o0ld] [[1,1]1];
cl=Position[fphi,Max[locans]] [[1,1]];
Do [ans=Append [ans,{b,fphi[[i]], "Lower",
If[i==c2,"Real","Virtual"]l}],{i,cl1+1,c2}];
Do[If[Take[a,-(n-i)]==Take[m,-(n-1)],
Iffal[i]l]==m([[i]],al[i]l]=1,al[i]]1++]],{i,n-1}];
If(al[n]]==m[[n]],al[n]]=1,aln]]++];
iter++];
Sort[ans,OrderedQ[{#1[[2]1]1, #2[[2]1]1}1&]]

UBPFromStructure [p_List,phi_Symbol,fphi_List] :=
Module[{n,m,nm,size,i,a,b,cl,c2,0ld,iter,ans,locans},

465

n=Length [p];
m=Table[Length[p[[i]]],{i,n}];
size=Product[m[[i]],{i,n}];
a=Table[1,{i,n}];

b=Table[0,{i,n}];

locans=Table[0,{i,n}];

iter=1;

nm=Last [fphi];

ans=1{};

While[iter<=size,
Do[b[[i]l]=p[[i,al[i]111],{i,n}];
old=phil[b];

Do[If[al[ill<m[[il],
locans[[i]]=phi[ReplacePart[b,
plli,al[i]1]+1]1],11],
locans[[i]]=nm]
,{i,n}];
c2=Position[fphi,old] [[1,1]];
cl=Position[fphi,Min[locans]][[1,1]1];
Do [ans=Append[ans,{b,fphi[[i]], "Upper",
If[i==c2,"Real","Virtual"]}],{i,c2,c1-1}]1;
Do[If[Take[a,-(n-i)]==Take[m,-(n-i)],
If(al(i]]==m([[i]1],al[i]l]1=1,al[i]1]++]1],{i,n-13}];
Iffal[n]]==m[[nl],al[n]l]l=1,al[n]]++];
iter++];
Sort[ans,OrderedQ[{#1[[2]], #2[[2]11}]1&]]

CUVUpperBound [n_Integer,m_Integer] := Coefficient[Sum[u"x,{x,0,m}] n,
u,Floor[(m n + 1)/2]]

BoedigheimerSeriesQ[1lbps_List,ubps_List,fphi_List] :=
Module [{good=True, j=1,
n=Length[1lbps[[1,1]1]],ubplist,lbplist},
While[j<=Length[fphi]-1 && good,
ubplist=Transpose[Select [ubps,
#[[2]]==fphi[[j]] &]J]1[[11];
lbplist=Transpose[Select [lbps,
#[[2]]==fphi[[j+1]] &JJ[[1]];
good=Length[lbplist]==1 && Length[ubplist]==n;
j++1;
good]

466

BoedigheimerParallelQ[1lbps_List,ubps_List,fphi_List] :=
Module [{good=True, j=1,
n=Length[1lbps[[1,1]1]],ubplist,lbplist},
While[j<=Length[fphil-1 && good,
ubplist=Transpose[Select [ubps,
#[[2]]1==fphi[[j]1] &J]1[[1]];
lbplist=Transpose[Select[lbps,
#[[2]]==fphi[[j+1]] &]1[[1]];
good=Length[1bplist]==n && Length[ubplist]==1;
j++1;
good]

LBPFromPaths [paths_List,n_Integer] :=
Map[{ReplacePart[Table[0,{n}], 1,
Partition[#,1]], 1, "Lower", "Real"} &, paths]

UBPFromCuts[cuts_List,n_Integer] :=
Map[{ReplacePart[Table[1,{n}], O,
Partition[#,1]1], O, "Upper", "Real"} &, cuts]

PathsFromLBP[1bps_List] := Map[Flatten[#] &,
Map[Position[#,1] &, Transpose[lbps] [[11]]1]

CutsFromUBP [ubps_List] := Map([Flatten[#] &,
Map[Position[#,0] &, Transpose[ubps] [[11]]1]

BoedigheimerReleventComponentsQ[lbps_List,ubps_List,p_List] :=
Module [{good=True, j=1,n=Length[p],1l,u},

1=Transpose [Transpose[1lbps] [[1]]1];

u=Transpose [Transpose [ubps] [[1]]];

While[j<=n && good,

good = MemberQ[First[p[[jl1]<# & /@ 1[[j]1],Truel ||
MemberQ[Last[pl[[j1]11># & /@ ul[j]],Truel;
j++1;
good]

467

StructuralImportances[p_List,phi_Symbol] := Module[{n,temp,cnt,ans,sizel},

n=Length[p];

ans=Table[1,{n}];

size=Times @@ (Length[#]& /@ p);

Do [temp=VectorSpace [ReplacePart[p,{Last[p[[i11]},i]1];
cnt=0;
Do[If[phil[temp[[jl1]]1>phil

ReplacePart[temp[[j]1],First[p[[i]]],1]1],cnt++]
,{j,Length[temp]}];

ans[[i]]=cnt*Length[p[[i]]]/size;
,{i,n}1;

ans]

UBPTOLBP [ubps_List,p_List,fphi_List] :=
Module [{potsols,ubplist,temp,ans={}},

Do [ubplist=Select [ubps,#[[2]]==fphi[[k]] &];
potsols=utlposs[ubplist,p];
potsols=utludomm[potsols,ubplist];
potsols=utlldomm[potsols];
temp=potsols;
Do[temp[[i]]={potsols[[il],fphil[[k+1]],

"Lower","Indet"},
{i,Length[potsols]}];
ans=Append [ans, temp] ;

,1k,Length[fphi]l-13}];

ans=Flatten[ans,1];

Sort[ans,OrderedQ[{#1[[2]], #2[[2]11}]1&]]

utlposs[ubplist_List,p_List] :=
Module [{a=p,toperm=p,ans={},n=Length[pl},
Do[Dolal[[i]l]=Position[p[[il],
ubplist[[j,1,i111[[1,11],{i,n}];
Do[If[al[[i]]<Length[p[[i]]1],
Do[toperm[[i2]]1=Take[p[[i2]],
alli2]]1],{i2,n}];
toperm[[i11={p[[i,al[i]1]1+111};
ans=Append [ans,VectorSpace [toperm]]]
,{i,n}]
,1j,Length[ubplist]}];
Union[Flatten[ans,1]]]

468

utludomm[potsols_List,ubplist_List] :=
Module[{go, j,a={}},
Do[go=False; j=1;
While[go==False && j<=Length[ubplist],
If [LessOrEqualQ[potsols[[1]],ubplist[[j,1]1]1],go=Truel;
j++1;
If [go==True,a=Append[a,l]];
,{1,1,Length[potsols]}];
Complement [potsols,potsols[[al]]]

utlldomm[potsols_List] :=
Module[{go, j,ans=potsols,n=Length[potsols]},
Do[go=False; j=1;

While[go==False && j<=Lengthl[ans],
If[GreaterQ[ans[[1]],ans[[j]]],go=Truel;
j++1;

If [go==True,ans=Drop[ans,{1}]1];

,{1l,n,1,-13}1;
ans]

LBPToUBP[1bps_List,p_List,fphi_List] :=
Module [{potsols,lbplist,temp,ans={}},
Do[lbplist=Select [1bps,#[[2]]==fphi[[k]] &];
potsols=1tlposs[lbplist,p];
potsols=1tludomm[potsols,lbplist];
potsols=1tlldomm[potsols];
temp=potsols;
Do[temp[[i]]={potsols[[i]],
fphi[[k-1]],"Upper","Indet"},
{i,Length[potsols]}];
ans=Append [ans, temp] ;
,{k,2,Length [fphil}];
ans=Flatten[ans,1];
Sort[ans,OrderedQ[{#1[[2]1]1, #2[[21]1}1&]]

ltlposs[lbplist_List,p_List] :=
Module [{a=p,toperm=p,ans={},n=Length[pl},
Do [Do[a[[i]]=Position[p[[il],
1bplist[[j,1,11110[1,11],{i,n}];
Do[If([al[il]>1,
Do[toperm[[i2]]=Take[p[[i2]],
al[i2]]-Length[p[[i2]]]-1],

469

{i2,n}];
toperm[[i]]={p([i,al[i]l]-1]13};
ans=Append [ans, VectorSpace [toperm]]]

,{i,n}]
,{j,Length[1bplist]}];
Union[Flatten[ans,1]1]]

ltludomm[potsols_List,lbplist_List] :=
Module [{go,j,a={}},
Do[go=False; j=1;
While[go==False && j<=Length[lbplist],
If [GreaterOrEqualQ[potsols[[1]],1bplist[[j,1]1]1],go=Truel;
j++1;
If [go==True,a=Append[a,1]];
,{1,1,Length[potsols]}];
Complement [potsols,potsols[[al]l]]

1tlldomm[potsols_List] :=
Module[{go, j,ans=potsols,n=Length[potsols]},
Do[go=False; j=1;

While[go==False && j<=Lengthl[ans],
If[LessQ[ans[[1]],ans[[j]1]],go=Truel;
j++1;

If [go==True,ans=Droplans,{1}]1];

,{1,n,1,-1}1;
ans]

CutsToPaths[cuts_List, n_Integer] := PathsFromLBP[UBPToLBP[
UBPFromCuts [cuts,n],Table[{0,1},{n}],{0,1}]]

PathsToCuts[paths_List, n_Integer] := CutsFromUBP[LBPToUBP [
LBPFromPaths[paths,n],Table[{0,1},{n}],{0,1}]]

SystemStateFromLBP [1bps_List,fphi_List,x_List] :=
Module [{good=True, j=2,1bplist,ans},
While[j<=Length[fphi] && good,
lbplist=Transpose[Select [1bps,
#[[2]]==fphil[[j]1] &]J1[[11];
good=MemberQ[(x~GreaterOrEqualQ~#)& /@ lbplist, True];
j++1;
If [good,ans=Last [fphil ,ans=fphi[[j-2]11];
ans]

470

SystemStateFromUBP [ubps_List,fphi_List,x_List] :=
Module [{good=True, j=Length[fphi]-1,ubplist,ans},
While[j>=1 && good,

ubplist=Transpose[Select [ubps,
#[[2]]1==fphi[[j]1] &J]1[[1]];
good=MemberQ[(x~LessOrEqualQ~#)& /@ ubplist, Truel;
j--1;
If[good,ans=First[fphi] ,ans=fphi[[j+2]]1];
ans]

BPClean[bplist_List,strone_String,strtwo_String:"Indet"] :=
Module [{ans=bplist,temp},
ans=Sort [bplist,OrderedQ[{#1[[2]], #2[[2]11}]&];
Do[If[Lengthlans[[i]]1]==2,
ans[[i]]=Append[ans[[i]],strone];

ans[[i]]=Append[ans[[i]],strtwol];
If [Length[ans[[i]]]==3,temp=ans[[i,3]];

If [temp=="Upper" || temp=="Lower",
ans[[i]]=Append[ans[[i]],strtwol];
If [temp==0,

ans[[i]]=Append[ans[[i]],"Real"];
ans[[i,3]]=strone];

If[temp==1,
ans[[i]]=Append[ans[[i]],"Virtual"];
ans[[i,3]]=stronel;

If [temp==2,
ans[[i]]=Append[ans[[i]],"Indet"];
ans[[i,3]]=strone];

If [temp=="Real" || temp=="Virtual",
ans[[i,3]]=strone;
ans[[i]]=Append[ans[[i]],templ]]

,{i,Length[bplist]}];
ans]

LBPSelfConsistentQ[lbpsin_List] := Module[{i=1,good=True,
1bps=Transpose[lbpsin] [[1]]1}, While[i<Length[lbps] &&
(good=FreeQ [Map [GreaterQ[1bps[[i]],#] &, Dropl[lbps,il],Truel),
i++]; good]

UBPSelfConsistentQ[ubpsin_List] := Module[{i=Length[ubps],good=True,
ubps=Transpose [ubpsin] [[1]]},

471

While[i>1 && (good=FreeQ[Map[LessQ[ubps[[i]],#] &, Take[ubps,
i-111,Truel), i--1;
good]

BPConsistentToEachOtherQ[lbps_List,ubps_List] := Module[{i=1,good=True},
While[i<=Length[ubps] && (good=FreeQ[Map[GreaterOrEqualQ[ubps[[i,1]],
#[[111] &, Select[lbps,#[[2]1>ubps([i,2]] &]1]1,Truel), i++];

good]

SystemLimitsFromBP [1bps_List,ubps_List] :=
{Min[Transpose[ubps] [[2]]],
Max [Transpose[1bps] [[2]]1]1}

StructureFromPhi[p_List,phi_Symbol] := {#, phil[#]}& /@ VectorSpace[p]

StructureFromLBP[p_List,lbps_List,fphi_List] :=
{#, SystemStateFromLBP[lbps,fphi,#]}& /@ VectorSpace[p]

StructureFromUBP [p_List,ubps_List,fphi_List] :=
{#, SystemStateFromUBP[ubps,fphi,#]}& /@ VectorSpace[p]

SystemSpaceFromBP [1bps_List,ubps_List] :=
Union[Transpose[ubps] [[2]], Transpose[lbps] [[2]]]

BPTypeFind [bplist_List, phi_Symbol] :=
Module [{ans=bplist},
Do[If([philans[[i,1]]]==ans[[i,2]],
ans[[i,4]]="Real",ans[[i,4]]="Virtual"]
,{i,Length[bplist]}];
ans]

472

J.3 Distributions

The functions in this section require that the Statistics‘ContinuousDistributions and Statis-

tics‘DiscreteDistributions packages also be loaded.

rdc[n_, t_] := 1-CDF[ChiDistribution[n],t]

rdcs[n_, t_] := 1-CDF[ChiSquareDistribution[n],t]

rde[lambda_, t_] := 1-CDF[ExponentialDistribution[lambda],t]

rdfr[nl_, n2_, t_] := 1-CDF[FRatioDistribution[nl,n2],t]

rdglalpha_, beta_, t_] := 1-CDF[GammaDistribution[alpha, beta],t]

rdhn[theta_, t_] := 1-CDF[HalfNormalDistribution[thetal, t]
rdln[mu_, sigma_, t_] := 1-CDF[LogNormalDistribution [mu,
sigmal, t]

rdncs[n_, lambda_, t_] :=
1-CDF [NoncentralChiSquareDistribution[n,lambda]l,t]

rdnfr[nl_, n2_, lambda_, t_] :=
1-CDF [NoncentralFRatioDistribution[nl,n2,lambda],t]

rdr[sigma_, t_] := 1-CDF[RayleighDistribution[sigmal, t]

rdw[alpha_, beta_, t_] :=
1-CDF [WeibullDistribution[alpha, betal, t]

rdulmax_, t_] := 1-CDF[UniformDistribution[0, max], t]

pdc[n_, t_] := PDF[ChiDistribution[n],t]

473

pdcs[n_, t_] := PDF[ChiSquareDistribution[n],t]

pde[lambda_, t_] := PDF[ExponentialDistribution[lambdal,t]

pdfr[ni_, n2_, t_] := PDF[FRatioDistribution[n1,n2],t]

pdglalpha_, beta_, t_] := PDF[GammaDistribution[alpha, beta], t]

pdhn[theta_, t_] := PDF[HalfNormalDistribution[theta], t]

pdln[mu_, sigma_, t_] := PDF[LogNormalDistribution[mu, sigmal, t]

pdncs[n_, lambda_, t_] :=
PDF [NoncentralChiSquareDistribution[n,lambdal,t]

pdnfr[ni_, n2_, lambda_, t_] :=
PDF [NoncentralFRatioDistribution[nl,n2,lambda],t]

pdr[sigma_, t_] := PDF[RayleighDistribution[sigma], t]

pdwlalpha_, beta_, t_] :=
PDF [WeibullDistribution[alpha, betal, t]

pdulmax_, t_] := PDF[UniformDistribution[0, max], t]

BinaryCDF[x_, p_] := Which[

x<0, O,
x>=1, 1,
True, 1-p

]

474

MultistateCDF[x_, sys_] := Which[
x<First[sys] [[1]], O,
x>=Last[sys] [[1]1], 1,
x>=First[sys] [[1]] && x<Last[sys][[1]],
Do[If[sys[[i,1]]<=x<sys[[i+1,1]],
Return[Sum[sys[[j,2]11,{j,i}]11]
,{i,Length[sys]-1}]]

CountableInfinityCDF[x_, mmadist_] :=
Which[x<0, O,
x>=1, 1,
True, CDF[mmadist,1/(1-x)-1]1]

UniformCDF[x_] := UniformMixedCDF[x, O, O]

TriangularCDF[x_, a_:1/2] := Which[x<0, O,
x>=1, 1,
x>=0 && x<a, x°2 / a,
True, (x"2 -2x+a)/(a-1)]

NonTruncatedCDF [x_, mmadist_] :=
(CDF [mmadist,x] -CDF [mmadist,0])/
(CDF [mmadist,1]-CDF [mmadist,0])

UniformMixedCDF[x_, 1i_:0, ui_:0] := Whichl[
x<0, O,
x>=1, 1,
True, li+x(1-1li-ui)

]

TruncatedCDF [x_, mmadist_] := Which[

x<0, O,
x>=1, 1,
True, CDF[mmadist,x]
]
UniformPDF[x_,min_:0,max_:1] := Which[x<min, O,

x>max, O,
True, 1/(max-min)]

TriangularPDF[x_, a_:(1/2), min_:0, max_:1] :=
Which[x<min,O,
x>max,0,
x>=min && x<=a, 2/(max-min) (x-min)/(a-min),
x>=a && x<=max, 2/(max-min) (1 - (x-a)/(max-a))]

BernoulliSYS([p_] := {{0, 1-p}, {1, p}}

UniformDiscreteSYS[n_] :=

If[n==1,{{0,1}},Table[{(i-1)/(n-1),1/n},{i,n}]]

BinomialSYS[n_, p_] := Table[{i/n,
PDF[BinomialDistribution[n, pl, il}, {i, 0, n}]

HypergeometricSYS[n_, nsucc_, ntot_] :=
With[{max=Min[n, nsucc], min=Max[0, n+nsucc-ntotl},
Table[{(i-min)/(max-min),

PDF [HypergeometricDistribution[n, nsucc, ntot], il}

,{i, min, max}]

]

FnEstimate[list_] := Module[{ans, n=Length[list]},
ans={#, #}& /0 Union[list];
Do[ans[[i,2]]=Length[Select[list, # == ans[[i,1]]&]]/n,
{i,Length[ans]}];
ans]

FnEstimateVar([list_] := 1/(4 Length[list])

CustomerLimitsGamma[m_, x_:(1/2), a_:0, b_:0] :=

Module [{v,ans, b2},

If[b==0,b2=m,b2=b];

ans = v /. FindRoot [CDF [GammaDistribution[v,
m/(v-1)],b2] -
CDF [GammaDistribution[v,
m/(v-1)],a] == x,{v,1.1,1.2}];

{ans, m/(ans-1)}]

CustomerLimitsWeibull[m_, x_:(1/2), a_:0, b_:0] :=

Module [{v,ans, b2},

If[b==0,b2=m,b2=b];

ans = v /. FindRoot [CDF[WeibullDistributionl[v,
m/((v-1)/v)~(1/v)],b2]-
CDF [WeibullDistributionl[v,
m/((v-1)/v)~(1/v)]1,a] == x,{v,1.1,1.2}];

{ans,m/((ans-1)/ans) "~ (1/ans)}]

475

476

J.4 DynamicModels

The functions in this section require that the Calculus‘LaplaceTransform package also be

loaded.

PDPErlangian[M_Integer, val_, t_] := Module[{ans=Table[0,{M+1}]},
Do[ans[[i+1]]=
(val t)"(M - i)*E~(-val t)/M-i)!,{i,1,M}];
ans[[1]]=1-Sum[ans[[i+1]],{i,1,M}];
ans]

PDPAdjacent [mymu_List, t_] := Module[{m, mu},
m=Length [mymu] ; mu=Prepend [mymu,0];
Table[ptil[i,m,mu,t], {i,0,m}]]

PDPNonAdjacent [n_Integer, mu_, t_] := Module[{j, hz2, a={}},
hz2=Array [mu,{20,20},0];
For[j=n, j>=0, j--, a=Prepend[a,pdp2[hz2,j,n,t]]1]; al

ptili_Integer, m_Integer, mu_List, t_] := Sum[aij[i,j,m,mulx*
E*(-mul[(j)+1]1]*t), {j,i,m}]*Product[mul[(j)+1]],{j,i+1,m}]

aij[i_Integer, j_Integer, m_Integer, mu_List] := Product[
If[k='=j,1/(mul{) +1]]1-mu[[(j)+1]1]),1],{k, i, m}]

pdp2[hz2_, n_, m_, t_] :=InverselLaplaceTransform[pdpz2[hz2,n,m],z,t]

pdpz2[hz2_, m_, m_] := 1/(Sum[hz2[[m+1,hz2temp]],
{hz2temp, 1, m}] + z)

pdpz2[hz2_, n_, m_] := Sum[hz2[[i + 1,n + 1]]*pdpz2[hz2, i, m],
{i, n + 1, m}]/(Sum[hz2[[n+1,hz2temp2]],
{hz2temp2,1,n}] + z)

CTMCStateProbabilities[matrix_List, t_, initialstate_Integer:-1]
Module[{n = Dimensions[matrix][[1]], m = matrix,
initial = initialstate, b, v, i, z, k},
If[initial == -1, initial = n - 1]; If[initial == O,
k =n, k =1];
Do[m[[i,i]] 0, {i, n}l;
For[i =1, i <= n, i++, v = Plus @@ Transpose[m] [[i]];
m[[i,i]] = -v];
m = m - zxIdentityMatrix[n]; m[[k]] = Table[1l, {n}];
b = Table[0, {n}]; b[[k]] = 1/z; b[[initial + 111 = -1;
InverselaplaceTransform[LinearSolve[m, b], z, t]]

CTMCMeanAbsorptionTimes [matrix_List, absorbingstates_List:{},
initialstate_Integer:-1] :=
Module[{n = Dimensions[matrix][[1]], m = matrix,
initial = initialstate, b, v, i},
For[i=1,i<=Dimensions[absorbingstates] [[1]],i++,
m=Transpose [ReplacePart [
Transpose[m] ,Table[0,{n}],absorbingstates[[i]]+1]]];
If[initial == -1, initial = n - 1];
Do[m[[i,i]] = 0, {i, nl}];
For[i = 1, i <= n, i++, v = Plus @@ Transpose[m] [[i]];
m[[i,i]] = -v];
b = Table[0, {n}]; bll[initial + 1]] = -1;
For[i=n,i>=1,i--,If[Transpose[m] [[i,1]]==0,
m=Drop[m,{i,i}];
m=Transpose [Drop[Transpose [m] ,{i,i}]1];
b=Drop[b,{i,1}111;
Plus @@ LinearSolve[m, b]l]

CTMCSteadyStateProbabilities[matrix_List] :=
Module[{n = Dimensions[matrix][[1]], m = matrix, b, v, i},

Do[m[[i,i]] = 0, {i, n}];

For[i = 1, i <= n, i++, v = Plus @@ Transpose[m] [[i]];
m[[i,i]] = -v];

m[[1]] = Table[1l, {n}];

b = Table[0, {n}];

b[[1]1]=1;

LinearSolve[m, b]]

CTMCMeanArrivals[m_List] :=Module[{n=Dimensions[m] [[1]], v, i},
v = Table[0, {n}];

477

478

For[i = 1, 1 <= n, i++,
v[[i]] = Plus @@ Transpose[m] [[i]] - m([[i,i]1]];
v*CTMCSteadyStateProbabilities [m]]

CTMCStayDurations[m_List] :=Module [{n=Dimensions[m] [[1]], v, i},
v = Table[0, {n}];
For[i =1, i <= n, i++,
v[[i]] = Plus @@ Transpose[m] [[i]] - m[[i,i]]];
1/v]

J.5 Measures

ExpectedFnState[sys_List, f_] := Plus @@ ((f[#[[1]11] #[[211)& /@ sys)

ExpectedState[sys_List] := Plus @@ ((#[[1]] #[[2]1)& /@ sys)

CDFExpectedState[cdf_, x_, max_:1] := CDFMoment[cdf, x, 1, max]

ExpectedOutput [sys_List, t_, tstar_, ni_:False] :=
If[ni,NIntegrate[ExpectedState[sys], {t, 0, tstar}],
Integrate[ExpectedState[sys], {t, 0, tstarl}]]

CDFExpectedOutput [cdf_, x_, t_, tstar_, max_:1] :=
NIntegrate [CDFExpectedState[(cdf /. t->t0), x, max], {t0, O, tstar}]

ExpectedTotalOutput [sys_List, t_, ni_:Falsel
ExpectedOutput[sys, t, Infinity, nil

CDFExpectedTotalOutput[cdf_, x_, t_, max_:1] :=
CDFExpectedOutput[cdf, x, t, Infinity, max]

VarianceOfOutputUB[sys_List, t_, tstar_, ni_:False] :=
If[ni,NIntegrate[(ExpectedSquaredSystemState[sys])~(1/2),
{t,0,tstar}] "2-
ExpectedOutput[sys,t,tstar,ni] "2,
Integrate [(ExpectedSquaredSystemState[sys])~(1/2),
{t,0,tstar}] "2-
ExpectedOutput [sys,t,tstar,ni] ~2]

479

CDFVarianceOfOutputUB[cdf_, x_, t_, tstar_, max_:1] :=
NIntegrate [(CDFMoment [(cdf /. t->t0), x, 2, max])~(1/2),
{t0,0,tstar}]1 "2 -
CDFExpectedOutput [cdf,x,t,tstar,max] "2

UpperStatesProbability[sys_List, j_] := Plus @@ ((#[[2]]&) /e
Select[sys, #[[1]1]1>=] &])

CDFUpperStatesProbability[cdf_, x_, j_] :=
CDFR[cdf, x, jl+CDFStateProbabilityl[cdf, x, jl

StateDwellTime[sys_List, t_, j_, ni_:False] :=
If[ni,NIntegrate[StateProbabilityl[sys,jl, {t, 0, Infinityl}],
Integrate[StateProbabilityl[sys,jl, {t, 0, Infinity}]]

CDFStateDwellTime[cdf_, x_, j_, t_] :=
NIntegrate [(CDFStateProbability[cdf, x, jl /. t->t0) //
Evaluate, {t0, 0, Infinity}]

StateVariance[sys_List] :=
ExpectedSquaredSystemState [sys]-(ExpectedState[sys]) "2

CDFStateVariancel[cdf_, x_, max_:1] :=
CDFMoment [cdf, x, 2, max]-(CDFMoment[cdf,x,1,max]) "2

LifetimeWeighted[sys_List, t_, u_, utotal_:1, ni_:False] :=
If[ni,NIntegrate[u*xExpectedState([sys],{t,0,Infinity}]/utotal,
Integrate [uxExpectedState[sys],{t,0,Infinity}]/utotall

CDFLifetimeWeighted[cdf_, x_, t_, u_, utotal_:1, max_:1] :=
NIntegrate [(uxCDFExpectedState[(cdf /. t->t0), x, max] /. t->t0),
{t0, 0, Infinity}]/utotal

StateProbability[sys_List, j_] :=
Select[sys, #[[1]]1==j &, 1]1[[1,2]]

CDFStateProbability[cdf_, x_, x0_:1] :=
Chop [CDFF [cdf,x,x0] -CDFF [cdf,x,x0-100*$MachineEpsilon]]

480

UpperStatesDwellTime[sys_List, t_, j_, ni_:False] :=
If[ni,NIntegrate[SYSR[sys,j]l, {t, O, Infinity}],
Integrate [SYSR[sys, j],
{t, 0, Infinity}]]

CDFUpperStatesDwellTime[cdf_, x_, j_, t_] :=
NIntegrate[(CDFR[cdf, x, j] /. t->t0) // Evaluate,
{t0, 0, Infinity}]

LowerStatesProbability[sys_List, j_] :=
1-UpperStatesProbability[sys, j]

CDFLowerStatesProbability[cdf_, x_, j_] :=
1-CDFUpperStatesProbability[cdf, x, j]

RangeStatesProbability[sys_List, j_, k_] :=
Plus @@ ((#[[2]]&) /e
Selectlsys, #[[1]11>]j && #[[11]1<=k &])

CDFRangeStatesProbability[cdf_, x_, j_, k_] :=
CDFF[cdf, x, k] - CDFF[cdf, x, jl

ExpectedLostOutput [sys_List, t_, tstar_, ni_:False] :=
sys[[Length[sys],1]]*tstar-ExpectedOutput [sys,t,tstar,ni]

CDFExpectedLostOutput [cdf_, x_, t_, tstar_, max_:1] :=
max*tstar-CDFExpectedOutput [cdf, x, t, tstar, max]

ExpectedScaledOutput [sys_List, t_, tstar_, ni_:False] :=
(ExpectedOutput [sys,t,tstar,ni] - tstar*sys[[1,1]11)/
(tstar*sys[[Length[sys],1]] - tstarxsys[[1,1]])

CDFExpectedScaledOutput[cdf_, x_, t_, tstar_, max_:1] :=
CDFExpectedOutput [cdf, x, t, tstar, max]/(max*tstar)

StateStandardDeviation[sys_List] := (StateVariance[sys])~(1/2)

481

CDFStateStandardDeviation[cdf_, x_, max_:1] :=
(CDFStateVariance[cdf, x, max])~(1/2)

ExpectedSquaredSystemState [sys_List] :=
Plus @@ ((#[[11]1°2 #[[2]1)& /@ sys)

DerivativeOfLSP[sys_List, t_, j_] :=
D[LowerStatesProbabilityl[sys, jl, t]

CDFDerivativeOfLSP[cdf_, x_, j_, t_] :=
D[CDFLowerStatesProbability[cdf, x, jl, t]

DegradationRate[sys_List, t_, j_] :=
DerivativeOfLSP[sys, t,j]/UpperStatesProbabilityl[sys, jl

Hazard[sys_List, t_, j_] :=
D[SYSF[sys,jl, tl/SYSR[sys, jl

CDFHazard[cdf_, x_, xOr_, t_, tOr_, prec_:$MachinePrecision] :=
With[{h=1/10" (prec-6),
t0=SetPrecision[tOr,prec],
f=CDFF [cdf, x, SetPrecision[x0Or,precl],
r=CDFR[cdf, x, SetPrecision[xOr,prec]]},
NL(((E /. t=>(t0+h)) - (f /. t->t0))/(h (r /. t->t0))), precl]

CDFHazardB[cdf_, x_, xOr_, t_, tOr_, prec_:$MachinePrecision] :=
Module [{t0,F,R},
Needs["NumericalMath‘NLimit‘"];
t0=SetPrecision[tOr,prec];
F=CDFF [cdf, x, SetPrecision[x0Or,precl];
R=CDFR[cdf, x, SetPrecision[xOr,prec]] /. t->t0;
ND[F,t,t0, WorkingPrecision->prec]/R]

DerivativeOfExpectedState[sys_List, t_] :=
D[ExpectedState[sys],t]

482

CDFDerivativeOfExpectedState[cdf_, x_, t_, tOr_,
prec_:$MachinePrecision, max_:1] :=
Module[{h=1/(2 10~ (prec-6)),
t0=SetPrecision[tOr,prec], fh, f},
fh=CDFExpectedState[(cdf /. t->(t0+h)), x, max];
f=CDFExpectedState[(cdf /. t->(t0-h)), x, max];
N[((fh-£f)/(2 h)), precl]

CumulativeStandardDeviation[sys_List, t_, tstar_, ni_:False] :=
If[ni,NIntegrate[StateStandardDeviation[sys], {t, 0, tstar}],
Integrate[StateStandardDeviation[sys], {t, O, tstar}]]

CDFCumulativeStandardDeviation[cdf_, x_, t_, tstar_, max_:1] :=
NIntegrate[CDFStateStandardDeviation[(cdf /. t->t0), x, max],
{t0, 0, tstar}]

SYSF[sys_List, j_] := Plus @@ ((#[[2]]&) /@
Select[sys, #[[11]1<=j &])

CDFF([cdf_, x_, x0_:0] := cdf /. x—>x0

SYSR[sys_List, j_] := Plus @@ ((#[[2]]&) /@
Select[sys, #[[111>j &1)

CDFR[cdf_, x_, x0_:1] := 1-CDFF[cdf, x, x0]

ChebyshevUB[x_, var_, epsilon_] := var/epsilon~”2

Moment [sys_List, n_:1] := Module([{f}, f[x_] := x"n;
ExpectedFnState[sys, f]]

CDFMoment [cdf_, x_, n_:1, max_:1] :=
NIntegrate[n x"(n-1) (1-cdf),{x,0,max}]

MaximalStateProportion[sys_List, t_, tstar_, ni_:False] :=
If[ni,NIntegrate[sys[[Length[sys],2]]/tstar, {t, O, tstar}],
Integrate[sys[[Length([sys],2]]/tstar,
{t, 0, tstar}]]

483

CDFMaximalStateProportionl[cdf_, x_, t_, tstar_, max_:1] :=
NIntegrate[((CDFStateProbability[cdf, x, max]/tstar) /.
t->t0) // Evaluate, {tO, 0, tstar}]

OnStreamAvailability[sys_List, t_, tstar_, j_, ni_:False] :=
If[ni,NIntegrate[SYSR[sys,jl/tstar, {t, O, tstarl}],
Integrate[SYSR[sys, jl/tstar,
{t, 0, tstar}]]

CDFOnStreamAvailability[cdf_, x_, j_, t_, tstar_] :=
NIntegrate[((CDFR[cdf, x, jl/tstar) /. t->t0) //
Evaluate, {tO0, 0, tstar}]

DiscreteEntropy[sys_] :=
- Plus @@ ((# Logl[#])& /@ Select[(#[[2]1]& /@ sys), Positive])

ContinuousEntropy[f_, x_, min_:0, max_:1, ni_:False] :=
If[ni, -NIntegrate[f*Log[f], {x, min, max}],
-Integrate[f*Log[f], {x, min, max}]]

SYSSkewness[sys_] :=
With [{m={Moment [sys, 1],
Moment [sys, 2],
Moment [sys, 3]11}7},
(m(03]1] - 3 m[[1]1] m[[2]] + 2 (m[[11]1)"3)/
m([[2]] - (m[[111)"2)"(3/2)]

CDFSkewness[cdf_, x_, max_:1] :=
With [{m={CDFMoment [cdf,x,1,max],
CDFMoment [cdf,x,2,max],
CDFMoment [cdf,x,3,max] }},
(m([3]1] - 3 m[[1]1] m[[2]] + 2 (m[[1]1]1)"3)/
m([[2]] - (m[[111)"2)"(3/2)]

SYSKurtosis[sys_] :=
With [{m={Moment [sys, 1],
Moment [sys, 2],
Moment [sys, 3],
Moment [sys,4]13}},
(m([4]] - 4 m[[1]] m([(3]1] + 6 (m[[1]1]1)"2 m[[2]] - 3 (m[[11])"4)/
(m[[2]] - (m[[1]11)~2)"2]

484

CDFKurtosis[cdf_, x_, max_:1] :=
With [{m={CDFMoment [cdf,x,1,max],
CDFMoment [cdf,x,2,max],
CDFMoment [cdf,x,3,max],
CDFMoment [cdf,x,4,max]}},
(m[[4]] - 4 m[[1]] m[[3]] + 6 (m[[1]11)"2 m[[2]] - 3 (m[[1]1]1)"4)/
(m[[2]] - (m[[1]]1)~2)"2]

SYSKurtosisExcess[sys_] := SYSKurtosis[sys] - 3

CDFKurtosisExcess[cdf_, x_, max_:1] := CDFKurtosis[cdf, x, max] - 3

SYSQuantile[sys_, q_:1/2] := Module[{temp=0},
Do[temp += sys[[i,2]1];
If [temp>=q, Return[sys([[i,1]111],
{i, Length[sys]}]]

CDFQuantile[cdf_, x_, q_:1/2, prec_:$MachinePrecision,
min_:0, max_:1] :=
(CDFQuantileUp[cdf, x, q, prec, min, max]+
CDFQuantileDown[cdf, x, q, prec, min, max])/2

CDFQuantileDown[cdf_, x_, q_:1/2, prec_:$MachinePrecision,
min_:0, max_:1] :=
Module[{tol=10" (-prec+3), u=max, d=min, templ},
While[u-d>=tol,
temp=N[(u-d)/2 + d, prec];
If[(cdf /. x—>temp) < q, d=temp, u=temp]l];
Which[Chop[temp-min,tol]==0,min,
Chop [temp-max,tol]==0,max,
True, temp]l]

CDFQuantileUp[cdf_, x_, q_:1/2, prec_:$MachinePrecision,
min_:0, max_:1] :=
Module[{tol=10" (-prec+3), u=max, d=min, templ},
While[u-d>=tol,
temp=N[(u-d)/2 + d, prec];
If[(cdf /. x->temp) <= q, d=temp, u=templ];
Which[Chop[temp-min,tol]==0,min,
Chop [temp-max,tol]==0,max,
True, temp]]

485

SYSMedian[sys_] := SYSQuantile[sys, 1/2]

CDFMedian[cdf_, x_, min_:0, max_:1] :=
CDFQuantile[cdf, x, 1/2, $MachinePrecision, min, max]

SYSQuartiles([sys_] :=
{SYSQuantile[sys, 1/4],
SYSQuantile[sys, 1/2],
SYSQuantile[sys, 3/4]}

CDFQuartiles[cdf_, x_, min_:0, max_:1]
{CDFQuantile[cdf, x, 1/4, $MachinePrecision, min, max],
CDFQuantile[cdf, x, 1/2, $MachinePrecision, min, max],
CDFQuantile[cdf, x, 3/4, $MachinePrecision, min, max]}

SYSQuadraticRaw([sys_, yO_, k_:1] := Module[{ans=sys},
Dolans[[i,1]1=k (sys[[i,11]1-y0)~2,{i,Lengthlsys]}]; ans]

CDFQuadraticMean[cdf_, x_, yO_, k_:1, max_:1]
With [{m=Table [CDFMoment [cdf, x, i, max], {i,2}]1},
kx(y0~2 - 2xyOxm[[1]] + m[[2]])

]

CDFQuadraticVariance[cdf_, x_, yO_, k_:1, max_:1]
With[{m=Table[CDFMoment [cdf, x, i, max], {i,4}]},
k™2x (-4xy0~2+m[[1]]1°2 + 4xy0~2*m[[2]] + 4xyO*m[[1]]*m[[2]] -
m[[2]]172 - 4*xyO*m[[3]] + m[[4]1])

]

CDFQuadraticSkewness[cdf_, x_, yO_, k_:1, max_:1]
With[{m=Table [CDFMoment [cdf, x, i, max], {i,6}]},
(2xk"3*(y0~2 - 2xyO*m[[1]] + m[[2]]1)"3 -
3xk"3x(y0~2 - 2xyO*m[[1]] + m[[2]1])*
(y0~4 - 4xy0~3*m[[1]] + 6xy0~2+m[[2]] - 4xyO*m[[3]] + m[[4]]) +
k™3%(y0"6 - 6*xy0~5*m[[1]] + 15xy0~4*m[[2]] - 20%y0~3*m[[3]] +
15*%y0~2*m[[4]] - 6*xyO*m[[5]] + m[[6]1]))/
(k™2% (-4xy0~2*xm[[1]1]1°2 + 4xy0~2*m[[2]] + 4*yO+m[[1]]*m[[2]] - m[[2]]"2 -
4xy0*m[[3]] + m[[4]1]1))~(3/2)

]

486

CDFQuadraticKurtosis[cdf_, x_, yO_, k_:1, max_:1] :=
With[{m=Table[CDFMoment [cdf, x, i, max], {i,8}]1},
(=3%k™4*(y0~2 - 2*yOxm[[1]] + m[[2]])"4 +
6xk~4*(y0~2 - 2*yO*m[[1]] + m[[2]])"2*
(y0~4 - 4xy0~3*«m[[1]] + 6xy0~2*xm[[2]] - 4*yO*m[[3]] + m[[4]]) -
4xk~4*(y0~2 - 2+yO*m[[1]] + m[[2]])*
(y0°6 - 6*xy0~5*m[[1]] + 15xy0~4*m[[2]] - 20*y0~3*m[[3]] +
15%y0~2*m[[4]1] - 6*xyOxm[[5]] + m[[6]]) +
k~4*(y0~8 - 8xy0~7*m[[1]] + 28%y0~6*m[[2]] - 56*y0~5*m[[3]] +
70%xy0~4*m[[4]] - 56*%y0~3*m[[5]] + 28+y0~2*m[[6]] - 8*yO*m[[7]] + m[[8]])
)/ (k™4 (~4xy0~2*m[[1]]°2 + 4*y0~2*m[[2]] + 4*xyO+m[[1]]*m[[2]] - m[[2]]"2 -
4xyOxm[[3]] + m[[4]1]1)"2)
]

CDFQuadraticKurtosisExcess[cdf_, x_, yO_, k_:1, max_:1]
CDFQuadraticKurtosis[cdf, x, yO, k, max] - 3

SYSInterquartileRange[sys_] := SYSQuantile[sys, 3/4] -
SYSQuantile[sys, 1/4]

CDFInterquartileRange[cdf_, x_, min_:0, max_:1] :=
CDFQuantile[cdf, x, 3/4, $MachinePrecision, min, max] -
CDFQuantile[cdf, x, 1/4, $MachinePrecision, min, max]

SYSQuartileDeviation[sys_] := SYSInterquartileRange[sys]/2

CDFQuartileDeviation[cdf_, x_, min_:0, max_:1] :=
CDFInterquartileRange[cdf, x, min, max]/2

SYSPearsonSkewness2[sys_] :=
3 (ExpectedState[sys] - SYSMedian[sys])/
StateStandardDeviation[sys]

CDFPearsonSkewness2[cdf_, x_, min_:0, max_:1] :=
3 (CDFExpectedState[cdf, x, max] - CDFMedian([cdf, x, min, max])/
CDFStateStandardDeviation[cdf, x, max]

CDFRandom[cdf_, x_, n_:1, min_:0, max_:1] :=
Table[CDFQuantileDown[cdf, x, Random[], $MachinePrecision,
min, max], {n}]

487

J.6 StochasticAnalysis

perm2[p_List] := Module[{tab,size,m,n,a,i,j},

n=Length [p];

m=Table[Length[p[[i]]],{i,n}];

size=Product[m[[i]],{i,n}];

tab=Table[0,{sizel}];

a=Table[1,{i,n}];

Do[tab[[j]]=Tablel[p[[i,al[i]]1]],{i,n}];
Do[If[Take[a,-(n-i)]==Take[m,-(n-i)],

If(al(i]l]==m([[i]1],al[i]l]1=1,al[i]1]++]1],{i,n-1}];

Iffal[n]]==m[[nl],al[n]l]l=1,al[n]]++];

,{j,size}];

tab]

systable2[p_List,phi_Symbol] := {#, phi[#]}& /@ perm2[p]

se2[sys_List] := Plus @@ ((#[[1]] #[[2]11)& /@ sys)

FellerLists[n_Integer, l_Integer] := Module[{list,newlist},
list=ReplacePart[Table[0,{1}],#,1]1& /@ Range[n];
Do[newlist={};

Do[newlist=Join[newlist,Table[ReplacePart[list[[i]],j,k],
{j,list[[i,k-111+1,n}]]
,{i,Length[list]}];
list=newlist
,{k,2,1}]1;
list]

ConsistentProbabilitiesQ[p_List, pprob_List] :=
((Length[#1& /@ p) == (Length[#]& /@ pprob)) &&
(Table[1, {Length[pl}] == Apply[Plus, pprob, 11)

SystemFromDirectEnumeration[p_List,phi_Symbol,
fphi_List,pprob_List] :=
Module[{ans = Table[0, {Length[fphi]}], table, templ,

table = systable2[p, phil;

Do[temp=Transpose[Select[table, #[[2]]==fphil[[i]] &]]1[[1]];
Do[Do[temp[[j,k]] =

pprob[[k,Position[p[[k]], temp[[j,kI111[[1,1111]
,{k,Length[p]}]

488

,{j,Length[temp] }];

ans[[i]] = Plus @@ Apply[Times, temp, 1]
,{i,Length[fphi]}];
ans

SystemFromLBPInclusionExclusion[p_List,lbps_List,
fphi_List,pprob_List] :=
Module [{pprobl,lbpsl,ans,clbp,v,fl,tmp},
pprobl=Drop[FoldList [Plus,1,-#],-1]& /@ pprob;
lbpsi=Drop[#,-2]& /@ lbps;
lbps1=MapAt [Position[fphi,#] [[1,1]1]1&,#,2]& /@ lbpsi;
1lbps1=MapAt [MapIndexed[Position[p[[#2[[1]1]1]],
#11[[1,1]1]&,#]1&,#,11& /@ lbpsl;
ans=Table[0,{Length[fphil}]; ans[[1]]=1;
Do [clbp=Transpose[Select[1lbpsl,#[[2]]1==i &]][[1]];
v=Length [clbp];
Do[fl=FellerLists[v,j];
tmp=Sum [Product [pprobl[[1,
(Max /@ Transposel[clbpl[[f1[[k]] J]1 1)[[1]1] 11,
{1,1,Length[p]}],{k,1,Length[f1]}];
ans[[i]] += (-1)"(j+1)*tmp
,1j,1,v}]
,{i,2,Length[fphil}];
Append[Table[ans[[i-1]]-ans[[il],
{i,2,Length[ans]}],Last[ans]]]

TrivialBoundsFromLBP[p_List,lbps_List,pprob_List] :=
Module [{pprobi},
pprobl=Drop[FoldList [Plus,1,-#],-1]& /@ pprob;
{Product [pprob1[[i,Position[p[[il],
lbps[[il] 10[1,111 11,{i,1,Length[pprobl]}],
1-Product[1-pprobl [[i,Position[p[[i]],
lbps[[i]] 1[[1,1]1]1 11,{i,1,Length[pprobl]}]
}

InclusionExclusionBoundsFromLBP[p_List,lbps_List,
fphi_List,pprob_List,prec_Integer] :=
Module[{pprobl,lbpsl,ans,clbp,v,fl,tmp,templ, tempu,bl,
pprobl=Drop[FoldList[Plus,1,-#],-1]1& /@ pprob;
lbps1=Drop[#,-2]& /@ lbps;
lbpsi=MapAt[Position[fphi,

489

#1[[1,1]11&,#,2]1& /@ lbpsi;
1bps1=MapAt [MapIndexed[Position[p[[#2[[1]1]]],
#11[01,1]1]&,#]1&,#,11& /@ 1lbpsl;
ans=Table[0,{Length[fphi]}]; ans[[1]]=1;
Do[clbp=Transpose[Select[lbpsl,#[[2]]==1 &]]1[[1]];
v=Length[clbp];
b=Min [prec,v];
If [b==v,
Do[fl=FellerLists[v,j];
tmp=Sum[Product [pprob1[[1,
(Max /@ Transposelclbpl[[f1[[kI] 11 1>[[11]1 11,
{1,1,Length[p]}],{k,1,Length[f1]}];
ans[[i]] += (-1)~(j+1)*tmp
,1j,1,v}],
Do[fl=FellerLists[v,j];
tmp=Sum[Product [pprob1[[1,
(Max /@ Transposel[clbp[[f1[[k]] 11 1)[[1]] 11,
{1,1,Lengthlpl}],{k,1,Length[f1]3}];
ans[[i]] += (1)~ (j+1)*tmp
,{j,1,b-13];
templ=ans[[i]];
fl=FellerLists[v,b];
tmp=Sum[Product [pprob1[[1,
(Max /@ Transposelclbpl[[f1[[kI] 11 1>[[11]1 11,
{1,1,Length[p]l}],{k,1,Length[f1]}];
tempu= templ+(-1)~ (b+1)*tmp;
If [templ<=tempu,ans[[i]]={templ, tempul},ans[[i]]={tempu,templ}]]
,{i,2,Length[fphi]}];
ans]

SystemMatrix[fphi_List,ans_List] := Transpose[{fphi,ans}]

ReliabilityImportance[p_List, phi_Symbol, fphi_List, pprob_List,
i_Integer, j_] :=
Module[{high,low},

high=ReplacePart[Table[0,{Length[pl[[i]l]1]1}],
1, Position[p[[il]l, j11;

low=ReplacePart[Table[0,{Length[p[[i]1]1]1}],
1, 11;

se2[SystemMatrix [fphi,
SystemFromDirectEnumeration[p,phi,fphi,

ReplacePart [pprob,high,i]1]]-
se2[SystemMatrix [fphi,

490

SystemFromDirectEnumeration[p,phi,fphi,
ReplacePart [pprob,low,i]]]]

ReliabilityImportancesTable[p_List, phi_Symbol, fphi_List, pprob_List]
Module [{ans},
ans=p;
Do[Do[ans[[i,jl]=
ReliabilityImportance[p, phi, fphi, pprob, i, pl[[i,jl]l]
,{j,Length[pl[i1]1]1}]
,{i,Length[pl}];
ans]

PToQ[p_List] Drop[FoldList[Plus,1,-p],-1]

QToP[g_List]

Append [Table[q[[i-1]1]1-q[[i]],{i,2,Length[q]l}],Last[q]]

StieltjesIntegrall[f_, g_, {t_, min_:0, max_:1}, fact_:2] :=
With[{di=(max-min)/ (10" fact)},
Sum[N[((g /. t->t0)-(g /. t->(t0-di))) (f /. t->t0)],
{t0, min, max, di}]]

StieltjesIntegralH[f_, g_, {t_, min_:0, max_:1}, fact_:2]
With[{di=(max-min)/(10"fact)},
Sum[N[((g /. t—>t0)-(g /. t->(t0-di))) (£ /. t->t0)],
{t0, min, max, dil}] +
NSum[((g /. t->t0)-(g /. t->(t0-di))) (f /. t->t0),
{t0, max+di, Infinity, di}, Method->Fit]]

StieltjesIntegralG[f_, g_, {t_, min_:0, max_:1}, fact_:2]
With[{di=(max-min)/(10"fact)},

Sum[N[((g /. t->t0)-(g /. t->(t0-di))) (£ /. t->t0)],
{t0, min, max, dil}] +

NSum[((g /. t->t0)-(g /. t->(t0-di))) (f /. t->t0),
{t0, max+di, Infinity, di}, Method->Fit] +

NSum[((g /. t->t0)-(g /. t->(t0-di))) (f /. t->t0),
{t0, min-di, -Infinity, -di}, Method->Fit]]

Plcdfs_List, rules___] := Times @@ (cdfs /. {rules})

S[cdfs_List, rules___] := 1-(Times @@ (1-(cdfs /. {rulesl})))

Alcdf_, x_, a_] := cdf /. x—>x/a

Cllcdfi_, {cdf2_, min2_:0, max2_:1}, x_, z_, fact_:2] :=

StieltjesIntegrall[(cdfl /. x->(z-x)), cdf2,
{x, min2, max2}, fact] /. z->x

CA[cdfl_, minl_:0, maxl_:1,
{cdf2_, min2_:0, max2_:1}, x_, z_, fact_:2]
A[C1[cdfl, {cdf2, min2, max2}, x, z, fact], x,
1/ (max1+max2)]

CAV[cdfi_, minil_:0, maxi_:1,
{cdf2_, min2_:0, max2_:1}, x_, z_, fact_:2]
A[C1[cdfl, {cdf2, min2, max2}, x, z, fact], x, 1/2]

DiscreteBuild[syslist_, phi_] :=
Module [{p, fphi,pprob, temp=syslist},
Do[Do[temp[[i,jl]l=syslist[[i,j,1]1],

{j,1,Length[syslist[[1]1]1}],{i,Length[syslist]}]; p=temp;

Do[Do[temp[[i,jl]l=syslist[[i,j,2]],

{j,1,Length[syslist[[111]1}],{i,Length[syslist]}]; pprob=temp;

fphi=Union[phi[#]& /@ perm2[p]l];
SystemMatrix[fphi,

SystemFromDirectEnumeration[p, phi, fphi, pprobll]

PM[syslist_] := Module[{phi},
phil[x_] := Max[x]; DiscreteBuild[syslist,phil]

SM[syslist_] := Module[{phi},
phil[x_] := Min[x]; DiscreteBuild[syslist,phil]

AM[sys_, a_] := Module[{ans=sys},
Do[ans[[i,1]]=a sys[[i,1]],{i,Length[sys]}]; ans]

CiM[syslist_] := Module[{phi},
phil[x_] := Plus @@ x; DiscreteBuild[syslist,phil]

CAM[syslist_] := Module[{phi, ans, min, max},
phi[x_] := Plus @@ x; ans=DiscreteBuild[syslist,phil;
max=ans [[Length[ans],1]];
AM[ans, 1/max]]

CAVM[syslist_] := Module[{phi, ans},
philx_] := Plus @@ x; ans=DiscreteBuild[syslist,phi];
AM[ans,1/Length[syslist]]]

491

492

J.7 NewFunctions

The functions in this section require that all the other packages also be loaded.

phiround[x_,phi_,fphi_] := Module[{temp,temp2},
temp=phi [x] ;
temp2=Min [(fphi-temp) "2];
First[Select[fphi, ((#-temp)~2 // N) == (temp2 // N)&,1]]]

Bounds2[data_List,f_List,ag_Integer:6] :=
Module[{a,b,ints,mid,total={0,0}},
a=ints=Union /@ Transpose[Transpose[datal [[1]1]];
b=Apply[List,Flatten[Array[Unique[], (Length /@ a)-1,2]1,1];
Do[If[ag>0,ints[[i,j]] = NIntegratel[f[[il],
{x,alli,j-11],alli,jl1]1},AccuracyGoal->ag],
ints[[i,jl] = (£00i1] /. x—>alli,jll)-
(£L[i1] /. x->alli,j-111) // NI
,{i,Length[al},{j,2,Length[al[[i]]1]1}];
Do[mid = ((#[[1]1]+#[[2]]1)/2)& /@ Table[{alli,b[[j,1i1]1-11],
alli,bl[j,i]1111},{i,Lengthlal}];
total += {PhiMin[mid,data],PhiMax[mid,data]}*
Product[ints[[i,b[[j,11]11],{i,Lengthlal}]
,{j,Length[bl}];
totall

PhiMax [x_List, data_List] := Min[Transpose[Select[
data,FreeQ[Inner[GreaterEqual,#[[1]],x,List],
Falsel&]1[[2]1]

PhiMin[x_List, data_List] := Max[Transposel[Select[
data,FreeQ[Inner[LessEqual,#[[1]],x,List],
Falsel&]]1[[2]1]]

SystemFromDirectEnumerationLow[p_List,data_List,
fphi_List,pprob_List] :=
Module[{ans = Table[0, {Length[fphill}], table, templ},

table = systable2low([p, phi, datal;

Do [temp=Transpose[Select[table, #[[2]]==fphil[[i]] &]][[1]];
Do[Do[temp[[j,k]] =

pprob[[k,Position[p[[k]], templ[[j,k]111[[1,1111]
,{k,Length[p]}]

,{j,Length[temp]}];

ans[[i]] = Plus @@ Apply[Times, temp, 1]
,{i,Length[fphi]}];
ans

systable2low[p_List,phi_Symbol,data_List] :=
{#, PhiMin[#,datal}& /@ perm2[p]

SystemFromDirectEnumerationHigh[p_List,data_List,
fphi_List,pprob_List] :=
Module[{ans = Table[0, {Length[fphil}], table, templ},

table = systable2high[p, phi, datal;
Do[temp=Transpose[Select[table, #[[2]]==fphil[i]] &]]1[[1]];

Do [Do[temp[[j,k]] =

pprob[[k,Position[pl[[k]], temp[[j,k]1]1[[1,1]1]]]
,{k,Length[p]}]

,{j,Length[temp]}];

ans[[i]] = Plus @@ Apply[Times, temp, 1]
,{i,Length[fphi]}];
ans

systable2high[p_List,phi_Symbol,data_List] :=
{#, PhiMax[#,data]}& /@ perm2[p]

MultiQuadricND2[inpdata_,rsq_:(1/6),
prec_:$MachinePrecision] :=
Module [{data,grid,obt,n,temp,tempc,low,high,ans,al,a0,a},
(* Initialize Main Variables *)
data=ExtremaAdd [inpdata] ;
n=Length[datal[1,1]1];
(x Create Grid *)
a=Union /@ Transpose[Transpose[data] [[1]]];
grid = Tablel[al[i,#1[[i]1]1+11],{i,n}]& /@
Apply([List,Flatten[Array[Uniquel[],Length /@ a,0]],2];
grid=Transpose[Sort [Transpose[{grid,Apply[Plus,
((gria-1/2)"2),21}1,
OrderedQ[{#1[[2]],#2[[2]]1}]1&]]1[[1]];
(* Calculate Grid Points Known Based on Monotonicity *)
al=Transpose[Select[data,Chop[(1-#[[2]1]1)]1==0&]1] [[1]];

493

494

a0=Transpose [Select [data,Chop [#[[2]11]1==0&]1]1[[1]];
If[Lengthl[al]l>1 || Length[a0]>1,
Do[Do[If[LessQ[grid[[il],a0[[j1]1],
If [FreeQ[Transpose[data] [[1]],grid[[i]1]],
data=Prepend[data,{grid[[i]],0}]]]
,{j,Length[a0]}];
Do[If[GreaterQ[grid[[il],a1[[j11],
If [FreeQ[Transpose[datal [[1]],grid[[i]]],
data=Prepend [data,{grid[[i]],1}1]1]
,{j,Length[al]}];
,{i,Length[grid]}1];
(* Calculated C Matrix, Based on Known Values *)
tempc=MultiQuadricC[data,rsq,prec];
(* Calculate Answers *)
obt=data;
ans=Table[1/2,{Length[grid]}]; (* assumes Mi=1/2 *)
Print["Calculation is Complete When Zero is Reached"];
Do[Print[Length[grid]l-il;
If [FreeQ[Transpose[datal [[1]1],grid[[i]1]],
low=0; high=1;
temp=MultiQuadric[grid[[i]],data,tempc,rsq,prec];
Do[If[LessQlobt[[j,1]],grid[[i]]],
low=Max [low,obt[[j,2]11]1];
If[GreaterQ[obt[[j,11],grid[[i]1]],
high=Min[high,obt[[j,2]1]11];
,{j,Length[obt]}];
If [temp<low,temp=low]; If[temp>high,temp=high];
obt=Prepend [obt,{grid[[i]], templ}];
ans[[i]]=temp,
ans[[i]]=Select[data,#[[1]]==grid[[i]]&] [[1,2]1]]
,{i,Length[grid]}];
(* Return Final Answer *)
Transpose[{grid,ans}]]

MultiQuadricNDRMSError[data_,phi_,m_:10] :=
Module[{real2,n}, n=Lengthl[datal[1,1]1]];
real2=PhiGrid[phi,m,n];
Sqrt[Sum[(real2[[i,2]] -
MLinInt[real2[[i,1]], datal)"2,
{i, Length[real2]}]/Length[real2]]]

PhiMinRMSError[data_,phi_,m_:10,
prec_:$MachinePrecision] :=

495

Module [{real,n},
n=Length[datal[1,1]1];
real=PhiGrid[phi,m,n];
Sqrt[Sum[(real [[i,2]]-PhiMin[real[[i,1]],datal)"2
,{i,Length[reall}]/Length[reall]]]

PhiMaxRMSError[data_,phi_,m_:10,
prec_:$MachinePrecision] :=

Module [{real,n},
n=Length[datal[1,1]]1];
real=PhiGrid[phi,m,n];
Sqrt[Sum[(real [[i,2]]-PhiMax[real[[i,1]],datal)"2
,{i,Length[reall}]/Length[reall]]

MuSigma[inp_List,expr_] :=
Module[{mean=expr, tol=expr},
tol=Sqrt[Sum[D[tol,inp[[i,1]]] " 2*inp[[i,3]1]"2,
{i,Length[inp]l}1];
Do [{mean,tol}={mean,tol} /.
{inp[[i,11] -> inp[[i,2]1},{i,Lengthlinp]}];
N[{mean,tol}]]

SVStillOut [mmax_] :=Module[{t},
Table[{c,t/.FindRoot [Evaluate[D[StateVariance[
Transpose [{Table[i/c,{i,0,c}],

PDPErlangian[c,1,t]1}]1]1,t1],
{t,c*3/5}1%},{c,1,mmax}]1]

	mainbody
	page35
	TUE12SE9.vsd
	Page-1

	stage3
	stage4
	stage5
	stage6
	stage7
	stage8
	stage9
	stage10
	stage11
	stage12
	stage13
	stage14
	stage15
	stage16
	stage17
	stage18
	stage19
	stage20
	stage21
	stage22

